ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА Российский патент 2016 года по МПК C22C38/54 

Описание патента на изобретение RU2585591C1

Изобретение относится к области металлургии, в частности к жаропрочным хромистым сталям мартенситного класса, содержащим 5-13% Cr, применяемым в энергетической промышленности для изготовления оборудования тепловых и газовых турбин. Предлагаемая сталь может применяться для изготовления лопаток паровых турбин энергетических установок с рабочими температурами до 630°C.

В конструкциях лопаток применяются коррозионно-стойкие и жаропрочные стали по ГОСТ 18968-73, а также металлические сплавы на никелевой основе. Сталь марки 20X13 применяется для лопаток, работающих при температуре, достигающей 440°C. При более высоких температурах до 540°C для изготовления лопаток назначают сталь марки 15Х11МФ. При температурах до 580°C применяется сталь марки 15Х12 ВНМФ. Указанные стали относятся к мартенситно-ферритному и мартенситному классам. Химический состав данных сталей по ГОСТ 5632-72 показан в табл.1.

Таблица 1 Химический состав сталей мартенситного класса 20Х13, 15Х11МФ, 13Х11Н2 В2МФ, 20Х12 ВНМФ по ГОСТ 5632-72 Элементы Массовая доля элементов, масс. % 20Х13 15Х11МФ 15Х12 ВНМФ Углерод 0,160-0,250 0,120-0,190 0,12 - 0,18 Кремний не более 0,800 не более 0,500 не более 0,4 Марганец не более 0,800 не более 0,700 0,5 - 0,9 Хром 12,000-14,000 10,000-11,500 11 - 13 Никель - - 0,4 - 0,8 Титан - - не более 0,2 Алюминий - - - Вольфрам - - 0,7 - 1,1 Молибден - 0,600-0,800 0,5 - 0,7 Ниобий - - - Ванадий - 0,250-0,400 0,15 - 0,3 Железо осн. осн. осн. Сера 0,025 0,025 не более 0,025 Фосфор 0,030 0,030 не более 0,030 Медь - - не более 0,3

Недостатками сталей 20Х13, 15Х11МФ, 15Х12 ВНМФ являются их низкая жаропрочность при температурах выше 580°C, а также ограниченная свариваемость, что делает невозможным их применение для изготовления лопаток турбин для работы при температурах выше 580°C. Для повышения температуры эксплуатации турбины необходимо изготавливать лопатки из аустенитных или жаропрочных никелевых сплавов. Следует отметить, что использование лопаток из сталей мартенситного класса, содержащих 9-12% хрома, имеет преимущество перед сталями аустенитного класса и жаропрочными никелевыми сплавами. Во-первых, роторы также изготавливаются из сталей мартенситного класса, поэтому коэффициент термического расширения будет близким для двух материалов и не будут требоваться конструктивные изменения для компенсации термического расширения. Во-вторых, в литературе имеется небольшое количество информации об опыте использования аустенитных и никелевых сталей для лопаток турбин электростанций, работающих на угле.

Наиболее близкой к предлагаемой стали является сталь, раскрытая в патенте RU2447184 (опубликован 10.04.2012]). Сталь содержит, масс. %:

углерод 0,080-0,120 кремний не более 0,100 марганец 0,050-0,100 хром 9,500-10,000 никель не более 0,200 вольфрам 1,800-2,200 молибден 0,6-0,8 ванадий 0,180-0,250 ниобий 0,040-0,070 азот не более 0,003 бор 0,008-0,01 кобальт 2,5-3,5 сера не более 0,006 фосфор не более 0,010 алюминий не более 0,010 медь не более 0,010 титан не более 0,010 железо остальное

Содержание молибдена и вольфрама определяется как %W/2+%Mo<1,5. Данная сталь обладает высоким уровнем сопротивления ползучести до температуры 630°C. Это позволяет использовать ее для изготовления лопаток турбин энергетических установок, работающих при 600-620°C.

Данные свойства стали достигаются благодаря формированию троостомартенситной структуры при термической обработке. В процессе среднего отпуска из мартенсита происходит выделение большей части углерода в виде карбидов, и процессы полигонизации и рекристаллизации не начинаются. Особенностью легирования стали является пониженное содержание азота. Известно, что повышенное содержание азота вызывает образование нитридов ванадия VN, которые при долговременной ползучести трансформируются в крупные частицы Z-фазы CrVN, что негативно влияет на жаропрочность стали. Основным недостатком данной стали является то, что при ползучести выделяется фаза Лавеса, Fe2(W,Mo). Этот процесс приводит к обеднению твердого раствора вольфрамом и уменьшает твердорастворное упрочнение. Частицы фазы Лавеса очень быстро коагулируют, поэтому повышение дисперсионного упрочнения за счет их выделения не компенсирует снижение твердорастворного упрочнения.

Задачей предлагаемого изобретения является устранение недостатка прототипа.

Технический результат - предложенная сталь обладает повышенными характеристиками длительной прочности за счет повышенного сопротивления ползучести и в результате работоспособна при температуре 630°C, что на 20-40°C выше по сравнению с имеющимися аналогами.

Поставленная задача решается предлагаемой жаропрочной сталью мартенситного класса, в состав которой дополнительно введен рений, изменено количество молибдена и вольфрама, при следующем соотношении компонентов, масс. %:

углерод 0,080-0,120 кремний не более 0,100 марганец 0,050-0,100 хром 9,500-10,000 никель не более 0,200 вольфрам 2,300-3,000 молибден 0,05-0,1 ванадий 0,180-0,250 ниобий 0,040-0,070 азот не более 0,003 бор 0,008-0,013 кобальт 2,5-3,5 рений 0,1-0,2 сера не более 0,006 фосфор не более 0,010 алюминий не более 0,010 медь 0,050-0,3 титан не более 0,010 железо остальное

Состав предложенной стали содержит следующие известные признаки.

Содержание углерода в количестве 0,08-0,12% повышает прокаливаемость стали, а также обеспечивает формирование карбидов типа Mе23C6. Содержание углерода менее 0,08% не обеспечивает необходимого уровня кратковременных механических свойств и длительной прочности. Повышение углерода свыше 0,12% нецелесообразно, т.к. ухудшает свариваемость стали.

Молибден и вольфрам в суммарном количестве 2,0-3,0% упрочняют твердый раствор, а также входят в состав карбидов типа Mе23C6 и затрудняют их коагуляцию, что повышает жаропрочные свойства стали.

Содержание ванадия в количестве 0,18-0,25% и ниобия до 0,07-0,1% обеспечивает упрочнение твердого раствора и получение более мелких карбонитридов, что повышает длительную прочность.

Кобальт в количестве 2,5-3,5% повышает твердорастворное упрочнение. Как аустенитообразующий элемент, кобальт сдерживает образование дельта-феррита. При содержании кобальта менее 2,5% происходит образование дельта-феррита. При избыточном содержании кобальта более 3,5% происходит уменьшение пластичности стали.

Титан в количестве не более 0,01% способствует формированию и стабилизации мелких карбонитридов MX, обогащенных ванадием и ниобием. При содержании титана свыше 0,01% происходит образование крупных карбонитридов, что снижает сопротивление ползучести.

Ограничение содержания фосфора до 0,01% и серы до 0,006% способствует получению более высоких характеристик пластичности стали.

Введение бора в количестве 0,008-0,013% повышает сопротивление деформации при ползучести. Бор сегрегирует по границам зерен, преимущественно бывшим аустенитным, что подавляет зернограничное проскальзывание и тем самым повышает время до разрушения. Бор в предлагаемой стали входит в состав карбидов типа Mе23C6 и уменьшает скорость их коагуляции при повышенных температурах, что повышает сопротивление деформации при ползучести. Кроме того, бор повышает сопротивление коррозии под напряжением и нивелирует неблагоприятное влияние повышенного содержания ванадия на окалиностойкость.

В качестве раскислителей в состав стали введены марганец в количестве 0,05-0,1%, кремний в количестве не более 0,1%, никель в количестве не более 0,2% и алюминий в количестве не более 0,01%. При содержании марганца более 0,1% и кремния более 0,1% усиливается склонность к образованию дельта-феррита, который неблагоприятно сказывается на ударной вязкости. Марганец также способствует выделению карбидов M23C6. Никель улучшает прокаливаемость стали и вязкость, сдерживает образование дельта-феррита. Повышение содержания никеля свыше 0,2% нецелесообразно, так как уменьшает длительную прочность из-за ускорения укрупнения частиц. При содержании алюминия свыше 0,01% образуются нитриды, которые снижают длительную прочность.

Предложенная сталь включает следующие новые, неизвестные из уровня техники, признаки:

- в состав стали включен рений в количестве 0,1-0,2%, что обеспечивает твердорастворное упрочнение путем снижения скорости всех диффузионно-контролируемых процессов в стали и, соответственно, обеспечивает снижение интенсивности разупрочнения стали под воздействием температур и напряжений. Также рений снижает скорость выделения фазы Лавеса, обогащенной вольфрамом, Fe2W, что обеспечивает повышение сопротивления ползучести за счет сохранения большей части вольфрама в твердом растворе и, следовательно, показателей длительной прочности. При добавлении рения в количестве менее 0,05% эффект от этого элемента незначителен. При добавлении рения в количестве более 0,5% сталь переупрочняется и значительно снижаются характеристики пластичности и ударной вязкости;

- изменено количество молибдена до минимально возможного значения 0,05-0,10%, а количество вольфрама увеличено до 2,7-3,0% при условии сохранения молибденового эквивалента в пределах Moeq=Mo+0,5W=1,40÷1,60, что обеспечивает присутствие вольфрама в твердом растворе в течение длительных испытаний на ползучесть без образования фазы Лавеса и увеличивает жаропрочность стали;

- введена медь в количестве 0,2-0,3%, что предотвращает образование дельта-феррита в процессе высокотемпературной деформации, а также способствует образованию мелкодисперсной фазы Лавеса на медных кластерах в процессе ползучести, что повышает сопротивление ползучести стали. Количество добавляемой меди определяется из баланса аустенит- и феррит-стабилизирующих элементов. Содержание меди ограничено не более 0,3%.

Пример осуществления

Были отлиты сплавы различных химических составов как в рамках заявленных интервалов, так и за их пределами (табл.2). Выплавка сплавов производилась в вакуумно-индукционной печи. В качестве шихты были использованы чистые шихтовые материалы, что позволило получить низкий уровень серы, фосфора и цветных металлов в полученных материалах. Слитки после обдирки были перекованы на заготовки в виде прутков квадратного сечения 20 мм методом свободной ковки в интервале температур от 1200°С до 900°С. Затем горячекованые прутки были подвергнуты нормализации при температуре 1050-1060°C и отпуску при 750-770°C в течение 3 часов.

Таблица 2 Химический состав предложенной стали по примерам 1-5 и стали-прототипа Сталь C Si Mn Cr Ni Co Mo W V Nb N B Re Al S P Cu Пример 1 0,11 0,06 0,1 10 0,20 3 0,1 3 0,2 0,04 0,003 0,008 0,18 0,01 0,006 0,008 0,30 Пример 2 0,08 0,07 0,05 9,5 0,18 2,5 0,05 2,3 0,18 0,05 0,003 0,008 0,10 0,01 0,004 0,007 0,05 Пример 3 0,12 0,06 0,1 10 0,15 3,5 0,1 3 0,25 0,07 0,003 0,01 0,20 0,03 0,006 0,005 0,30 Пример 4 0,11 0,08 0,08 10 0,20 2,9 0,01 2 0,24 0,06 0,007 0,09 0,05 0,01 0,005 0,008 0,45 Пример 5 0,11 0,05 0,08 9 0,10 2,7 0,5 3,7 0,19 0,05 0,003 0,012 0,29 0,015 0,006 0,007 0,30 Сталь-прототип 0,11 0,06 0,3 10 0,2 3 0,7 2,1 0,2 0,04 0,003 0,008 - 0,01 0,001 0,001 -

Необходимо отметить, что в первых трех примерах осуществления изобретения количество легирующих элементов входит в указанные пределы заявленной стали. Однако в последних двух примерах были допущены отклонения от заданного химического состава, а именно в примере 4 нарушено соотношение молибдена и вольфрама, а количество рения меньше нижнего допустимого предела содержания рения, а в примере 5 завышено значение молибденового эквивалента (выше 1,6) и количество рения выше верхнего предела содержания рения.

Испытания на длительную прочность проводились по ГОСТ 10145-62 (табл.3). Предел длительной прочности на базе 105 часов был рассчитан с помощью параметра Ларсена-Миллера. Испытания проведены на базе до 20 000 часов.

Таблица 3 Испытания на ползучесть Длительная прочность при ползучести, σ за 105 час, МПа Пример 1 Пример 2 Пример 3 Пример 4 Пример 5 Сталь-прототип Тиспытания=620°С 140 142 140 110 107 127 Тиспытания=650°С 110 115 105 85 80 99

Как видно из таблицы 3, механические свойства предлагаемой стали, легированной в указанных допустимых пределах содержания элементов, а именно примеров 1-3, выше по сравнению со сталью-прототипом. Длительная прочность на базе 100000 ч примеров 1-3 при температуре 620°С составляет в среднем 140±5 МПа, а при температуре 650°С - в среднем 110±5 МПа, что превышает длительную прочность стали-прототипа при обеих температурах. Однако при легировании стали не в заявленных пределах длительная прочность снижается, что связано с низким содержанием рения в примере 4, который при таком количестве не оказывает положительного эффекта, а также с нарушением молибденового эквивалента - он ниже 1,4, что снижает твердорастворное упрочнение. В примере 5 количество рения завышено, а также завышено значение молибденового эквивалента (выше 1,6), что приводит к переупрочнению стали, с одной стороны, а с другой, к избыточному выделению фазы Лавеса в процессе ползучести, вследствие чего величины пластичности и ударной вязкости снижаются, что приводит к падению длительной прочности.

Как видно из таблицы 3, при легировании стали в указанных пределах показатели длительной прочности предлагаемой стали выше, чем у прототипа, что позволяет применять ее для изготовления лопаток паровых турбин и других элементов энергетических установок. Использование стали в теплоэнергетике позволит поднять рабочую температуру тепловых электростанций до 630°C.

Похожие патенты RU2585591C1

название год авторы номер документа
Жаропрочная сталь мартенситного класса 2020
  • Кайбышев Рустам Оскарович
  • Федосеева Александра Эдуардовна
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Мишнев Роман Владимирович
  • Ткачев Евгений Сергеевич
  • Никитин Иван Сергеевич
RU2757923C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2011
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
RU2447184C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2014
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Федосеева Александра Эдуардовна
  • Мишнев Роман Владимирович
RU2598725C2
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2010
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Дудова Надежда Разилевна
  • Дудко Валерий Александрович
  • Кипелова Алла Юрьевна
  • Молодов Дмитрий Алексеевич
RU2437956C1
Жаропрочная сталь мартенситного класса 2017
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Федосеева Александра Эдуардовна
  • Мишнев Роман Владимирович
  • Ткачев Евгений Сергеевич
RU2655496C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2014
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Федорова Ирина Федоровна
RU2558738C1
ЖАРОСТОЙКИЙ ЖЕЛЕЗО-ХРОМ-АЛЮМИНИЕВЫЙ СПЛАВ С НИЗКОЙ СКОРОСТЬЮ ИСПАРЕНИЯ ХРОМА И ПОВЫШЕННОЙ ЖАРОПРОЧНОСТЬЮ 2012
  • Хаттендорф, Хайке
  • Кун, Бернд
  • Экардт, Томас
  • Бек, Тильманн
  • Квадаккерс, Виллем, Ю.
  • Тайзен, Вернер
  • Набиран, Нилофар
RU2567144C2
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2013
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
RU2524465C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Алексеевич
  • Ригина Людмила Георгиевна
  • Щенкова Изабелла Алексеевна
  • Козлов Павел Александрович
  • Фёдоров Александр Анатольевич
  • Сафьянов Анатолий Васильевич
  • Фирсов Борис Николаевич
RU2448192C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Ригина Людмила Георгиевна
  • Козлов Павел Александрович
  • Дуб Владимир Алексеевич
RU2458179C1

Реферат патента 2016 года ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА

Изобретение относится к области металлургии, а именно к жаропрочной хромистой стали мартенситного класса, используемой для изготовления лопаток турбин энергетических установок. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,08-0,12, кремний не более 0,1, марганец 0,05-0,1, хром 9,5-10,0, никель не более 0,2, вольфрам 2,3-3,0, молибден 0,05-0,1, кобальт 2,5-3,5, ванадий 0,18-0,25, ниобий 0,04-0,07, азот не более 0,003, бор 0,008-0,013, рений 0,1-0,2, сера не более 0,006, фосфор не более 0,01, алюминий не более 0,01, медь 0,05-0,3, титан не более 0,01, железо остальное. Повышаются показатели длительной прочности, что позволяет при использовании стали в теплоэнергетике поднять рабочую температуру тепловых электростанций до 630°C. 3 табл., 1 пр.

Формула изобретения RU 2 585 591 C1

Жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, отличающаяся тем, что она дополнительно содержит рений при следующем соотношении компонентов, мас.%
углерод 0,08-0,12 кремний не более 0,1 марганец 0,05-0,1 хром 9,5-10,0 никель не более 0,2 вольфрам 2,3-3,0 молибден 0,05-0,1 ванадий 0,18-0,25 ниобий 0,04-0,07 азот не более 0,003 бор 0,008-0,013 кобальт 2,5-3,5 рений 0,1-0,2 сера не более 0,006 фосфор не более 0,010 алюминий не более 0,010 медь 0,05-0,3 титан не более 0,01 железо остальное

Документы, цитированные в отчете о поиске Патент 2016 года RU2585591C1

US 20130294959 A1, 07.11.2013
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2011
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
RU2447184C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2013
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
RU2524465C1
Загрузочное устройство "ЕРКАН 1982
  • Ермаков Юрий Георгиевич
  • Канер Вадим Фроимович
SU1041261A1
Конвейерный поезд с линейным электромагнитным приводом 1987
  • Трусий Владимир Терентьевич
  • Ронжес Юрий Наумович
  • Свирский Владимир Романович
  • Малиновский Юрий Александрович
  • Осипов Борис Михайлович
SU1466993A1

RU 2 585 591 C1

Авторы

Кайбышев Рустам Оскарович

Беляков Андрей Николаевич

Дудова Надежда Рузилевна

Дудко Валерий Александрович

Федосеева Александра Эдуардовна

Мишнев Роман Владимирович

Даты

2016-05-27Публикация

2014-11-28Подача