Изобретение относится к трубопрокатному производству, а именно к способу производства длинномерных многослойных биметаллических труб большого диаметра с повышенным ресурсом эксплуатации в агрессивных средах для транспортировки углеводородов с повышенным содержанием серы.
В трубном производстве известен способ изготовления сварных труб большого диаметра, включающий формовку трубной заготовки, сварку труб, экспандирование и объемную термическую обработку - закалку с высоким отпуском (авт. свид. СССР №450839, 1974 г.).
Недостаток известного способа заключается в том, что он не обеспечивает одинаковых свойств основного металла и сварного соединения, что снижает эксплуатационную надежность труб из-за недостаточного сопротивления хрупкому разрушению (низкие значения ударной вязкости) сварного шва и овализация концов при объемной термической обработке труб, а также не решает проблему предотвращения лавинных разрушений при увеличении мощности трубопроводов для транспортировки углеводородов, что в свою очередь ведет к увеличению толщины стенки труб, увеличению массы одного погонного метра труб, а следовательно, к росту их стоимости.
В трубной промышленности известен способ производства сварных труб большого диаметра, включающий формовку, сварку трубных заготовок, нагрев сварного шва до температуры АС3+(120-200)°С, раскатку сварного шва, нагрев раскатанного сварного шва и зоны термического влияния до температуры АС3+(80-100)°С с последующей закалкой в водяном спрейере со скоростью охлаждения (70-100)°С в секунду и отпуск при температуре АС1+(30-80)°С (патент РФ №2221057, кл. C21D 9/08, C21D 9/50, C21D 8/10, бюл. №1, 10.01.2004 г.).
Данный способ повышает стабильность механических свойств (ударной вязкости) сварного соединения и зоны термического влияния, выравнивает их значения до уровня основного металла, но не решает проблему повышенной стойкости к общей и язвенной коррозии, стойкости к сульфидному коррозионному растрескиванию, образованию водородных трещин и лавинных разрушений металла труб большого диаметра, предназначенных для строительства и эксплуатации нефтегазопроводов в условиях северной климатической зоны и морской воды, при температуре окружающей среды от минус 60° до плюс 40°С с температурой транспортируемых сред от минус 20° до плюс 40°С. Лавинные разрушения выводят из строя трубопроводные системы, представляют серьезную опасность для обслуживающего персонала и окружающей среды. Для защиты от атмосферной коррозии и морской воды применяют многослойные полиэтиленовые покрытия.
В трубном производстве известен способ изготовления труб большого и среднего диаметров из хладостойких и коррозионно-стойких марок стали 20ФА, 13ХФА, 09Г2С, 06Х1НФА и др. с повышенными эксплуатационными свойствами против сульфидного коррозионного растрескивания и образованию водородных трещин (патент РФ №2306992, кл. B21B 21/00, B21B 21/04, бюл. №27 от 27.09.2007).
Данный способ повышает стойкость труб к общей и язвенной коррозии, к сульфидному коррозионному растрескиванию и образованию водородных трещин, но не решает проблему предотвращения лавинных разрушений при увеличении мощности трубопроводов для транспортировки углеводородов не только в сложных климатических условиях, но и обычных. Использование данных марок стали для изготовления сварных труб большого диаметра с повышенными толщинами стенок, приводит к значительному повышению металлоемкости и их стоимости.
Известен способ производства электросварных труб большого диаметра с ориентированной односторонней разностенностью для транспортировки абразивных сыпучих материалов и пульп, включающий формовку заготовки, сварку стыкуемых кромок, экспандирование полученной трубы и обработку ее торцов, при этом в качестве заготовки используют листовой штрипс, на который предварительно накладывают и приваривают дополнительный лист, располагая его симметрично относительно продольной оси листового штрипса, имеющий длину, равную длине листового штрипса, и ширину, меньшую ширины последнего, а суммарную толщину листового штрипса и дополнительного листа выбирают из условий превышения номинальной толщины штрипса по меньшей мере в 1,5 раза (патент РФ №2057603, кл. B21C 37/08, бюл. №10 от 10.04.96).
Недостатком данного способа является то, что он направлен на производство и использование труб для транспортировки абразивных сыпучих материалов и пульп, не решает проблему предотвращения лавинных разрушений при увеличении мощности трубопроводов для транспортировки углеводородов не только в сложных климатических условиях, но и в обычных, т.е. не решает технические, технологические и экологические вопросы транспортировки углеводородов с повышенным содержанием серы под давлением на большие расстояния.
Наиболее близким техническим решением является способ производства трехслойных биметаллических центробежно-литых заготовок и биметаллических износостойких труб для транспортировки абразивных материалов и пульп на трубопрокатных установках с пилигримовыми станами с учетом угара пластичных слоев центробежно-литых биметаллических заготовок в процессе нагрева их под прокатку в нагревательных печах до температуры пластичности, при этом прокатку биметаллических труб производят на пилигримовых станах с обжатием по диаметру от 100 до 180 мм, а отношение толщин пластичных слоев центробежно-литых заготовок и труб принимают равным Sн/Sв=1,5-2,5, где Sн - толщина наружного пластичного слоя центробежно-литых биметаллических заготовок и труб, мм; Sв - толщина внутреннего пластичного слоя центробежно-литых биметаллических заготовок и труб, мм (патент РФ №2268796, Кл. B21B 21/00, бюл. №3 от 27.01.2006).
Недостатком данного способа, так же, как и выше приведенного аналога, является то, что он направлен на использование труб для транспортировки абразивных сыпучих материалов и пульп и не решает технические, технологические и экологические вопросы транспортировки углеводородов с повышенным содержанием серы под давлением на большие расстояния в морских агрессивных средах.
Задачей предложенного способа является производство длинномерных многослойных биметаллических труб большого диаметра с повышенным ресурсом эксплуатации в агрессивных средах для транспортировки углеводородов с повышенным содержанием серы на большие расстояния с повышенными давлениями, исключение образования лавинных разрушений, снижение металлоемкости трубопроводов, повышение их экологической безопасности, снижение металлоемкости и энергоемкости оборудования для их производства, а следовательно, снижение их стоимости.
Технический результат достигается тем, что в известном способе производства длинномерных многослойных биметаллических труб большого диаметра с повышенным ресурсом эксплуатации в агрессивных средах для транспортировки углеводородов с повышенным содержанием серы, характеризующемся тем, что производят трубы-заготовки намоткой на вращающийся барабан-шпулю многослойных по длине листов - штрипсов из сталей 08Х18Н10Т и 17Г1СУ и последующую стыковую поперечную сварку труб-заготовок, при этом кромки листов перед сваркой в листы - штрипсы фрезеруют под углом 45°, сваривают стыковой сваркой под слоем флюса с последующей фрезеровкой сварных швов до номинальной толщины стенки свариваемых листов, а сварные швы на наружной поверхности многослойных труб смещают относительно швов на внутренней поверхности на величины, значения которых определяют из выражения Δсм =α-πδ(nΣ-n2)≥0, где α=50 - величина смещения наружного сварного шва относительно внутреннего при изготовлении двухслойных биметаллических труб, мм; nΣ - максимальное количество слоев при изготовлении многослойных биметаллических труб; n2=2 - количество слоев при изготовлении двухслойных труб; δ - номинальная толщина стенки листа - штрипса, мм, а толщину листов - штрипсов выбирают из условий эксплуатации биметаллических труб.
Сравнение заявляемых технических решений с прототипом позволило установить соответствие их критерию «изобретательский уровень».
При изучении других известных технических решений в данной области техники признаки, отличающие заявляемое изобретение от прототипа, не были выявлены, и поэтому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».
Так как аналогичного способа и оборудования в мировой практике не существует, то пример конкретного выполнения в данный период времени привести не представляется возможным. Вместо примера конкретного выполнения приведена технологическая последовательность операций производства длинномерных многослойных биметаллических труб размером 1020×24×12000 мм из листовых биметаллических листов - штрипсов размером 4000×3 мм сталей 08Х18Н10Т и 17ГСУ.
Для производства биметаллических труб-заготовок размером 1020×24×4000 мм используют биметаллические по длине листы-заготовки размером 4000×3×25135 мм, состоящие из стали 08Х18Н10Т длиной 3178 мм для внутренней плакировки, стали 17ГСУ длиной 18722 мм для формирования основной толщины стенки и стали 08Х18Н10Т длиной 3235 мм для наружной плакировки труб. Листы из стали 08Х18Н10Т и 17ГСУ фрезеруют с двух сторон под углом 45°, сваривают и фрезеруют сварные швы на участке для сборки биметаллических листов - штрипсов.
Биметаллический лист - штрипс размером 4000×3×25135 мм укладывают на рольганг правильно-натяжного устройства, подают через паз стационарного кожуха и заправляют в паз барабана-шпули. Внутренний диаметр кожура равен наружному диаметру многослойной биметаллической трубы. Наружный диаметр барабана-шпули равен внутреннему диаметру многослойной биметаллической трубы-заготовки, а именно, 1020-2×24=972 мм. После заправки биметаллического листа - штрипса в паз барабана-шпули закрывают крышку с упорным подшипником, включают двигатель с предельным моментом привода барабана-шпули, который через шестеренную клеть (редуктор) приводит во вращение барабан-шпулю и начинает наматывать биметаллический лист - штрипс на барабан-шпулю. Процесс намотки производят до полного заполнения стационарного кожуха, т.е. до входа заднего конца биметаллического листа - штрипса в стационарный кожух. При заполнении стационарного кожуха процесс намотки приостанавливают. Открывают крышку с упорным подшипником. Для сцепления листов биметаллической трубы-заготовки установкой сварки производят сварку - сплавление концов листов по радиусу (по одной образующей) от наружной поверхности трубы-заготовки к внутренней. После выполнения данной операции рычагом, приводимым в движение двигателем через червячный редуктор и винтовой привод, начинают снимать многослойную биметаллическую трубу-заготовку с барабана-шпули и производить продольную сварку торца листа стали 08Х18Н10Т с наружной поверхностью биметаллической трубы-заготовки под слоем флюса. После снятия и выдачи трубы-заготовки на рольганг производят сварку - сплавление второго торца трубы-заготовки аналогично первому. Биметаллическая труба-заготовка по рольгангу поступает в отделочную часть цеха, где производят оплавление или фрезерование затравочного конца листа - штрипса стали 08Х18Н10Т с последующей продольной сваркой внутренней кромки биметаллической трубы-заготовки. В отделочной части торцы труб-заготовок подвергают плазменной обработке с последующим нанесением фаски под сварку. После нанесения фаски для сцепления торцов биметаллических слоев труб-заготовок производят напыление сталью 08Х18Н10Т. Многослойные биметаллические трубы-заготовки стыкуют и сваривают в трубы плети диной 12-18 м (в нашем случае 12 м). Затем проводят экспандирование, УЗК, маркировку, приемку, комплектацию труб в партии и отгрузку заказчику. Использование предлагаемого способа позволит производить длинномерные многослойные биметаллические трубы большого диаметра из разных марок стали и сплавов, а применение их при прокладке трубопроводов с повышенным ресурсом эксплуатации в агрессивных средах по дну морей для транспортировки углеводородов с повышенным содержанием серы по сравнению с прямошовными трубами с полиэтиленовым покрытием позволит значительно повысить срок их эксплуатации, исключить образование лавинных разрушений, значительно снизить металлоемкость трубопроводов, повысить экологическую безопасность и снизить стоимость труб. Использование данного способа позволит впервые в мировой практике осуществить поточное производство многослойных длинномерных биметаллических труб большого диаметра с заданными геометрическими параметрами, обеспечить потребность страны в трубах данного сортамента, производить конкурентоспособную продукцию и экспортировать ее в другие страны мира. Способ производства длинномерных многослойных биметаллических труб большого диаметра не требует больших капитальных вложений в строительство металлоемких и энергоемких цехов для производства широкополосных листов с толстыми стенками, как станы 5000, и установок для многослойного полиэтиленового покрытия труб, которое требует бережного отношения при транспортировке, монтаже, прокладке труб в траншеи и по дну морей на больших глубинах.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ДЛИННОМЕРНЫХ МНОГОСЛОЙНЫХ БИМЕТАЛЛИЧЕСКИХ ТРУБ БОЛЬШОГО ДИАМЕТРА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ СЕРЫ | 2013 |
|
RU2547361C2 |
СПОСОБ ПРОИЗВОДСТВА ДЛИННОМЕРНЫХ МНОГОСЛОЙНЫХ МЕТАЛЛИЧЕСКИХ ТРУБ БОЛЬШОГО ДИАМЕТРА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2545967C2 |
ТРУБОПРОКАТНАЯ УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ДЛИННОМЕРНЫХ МНОГОСЛОЙНЫХ МЕТАЛЛИЧЕСКИХ ТРУБ БОЛЬШОГО ДИАМЕТРА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ | 2013 |
|
RU2564501C2 |
БИМЕТАЛЛИЧЕСКАЯ ЗАГОТОВКА ИЗ СТАЛЕЙ МАРОК (10ГН2МФА+08Х18Н10Т) И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ ДЛЯ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ БИМЕТАЛЛИЧЕСКИХ ТРУБ РАЗМЕРОМ ВН.279×36 И ВН.346×40 мм С ВНУТРЕННИМ ПЛАКИРУЮЩИМ СЛОЕМ ТОЛЩИНОЙ 7±2 мм ИЗ СТАЛИ МАРКИ 08Х18Н10Т ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ | 2013 |
|
RU2554249C2 |
БИМЕТАЛЛИЧЕСКАЯ ЗАГОТОВКА ИЗ СТАЛЕЙ МАРОК 10ГН2МФА И 08Х18Н10Т ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ, МЕХАНИЧЕСКИ ОБРАБОТАННЫХ, БИМЕТАЛЛИЧЕСКИХ ТРУБ РАЗМЕРОМ ВН.279Х36 ММ ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ | 2013 |
|
RU2567420C2 |
СПОСОБ ПРОИЗВОДСТВА ЗАГОТОВОК С НАРУЖНЫМИ И ВНУТРЕННИМИ ПЛАКИРУЮЩИМИ СЛОЯМИ ИЗ КОРРОЗИОННО-СТОЙКИХ СТАЛЕЙ И СПЛАВОВ, ПРОИЗВОДСТВА ИЗ НИХ БЕСШОВНЫХ ТРЕХСЛОЙНЫХ ГОРЯЧЕКАТАНЫХ И ХОЛОДНОКАТАНЫХ ТОВАРНЫХ И ПЕРЕДЕЛЬНЫХ ТРУБ С ПОВЫШЕННЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ, ДЛЯ ДОБЫЧИ ГАЗА И ГАЗОВОГО КОНДЕНСАТА В СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ, ЕГО ТРАНСПОРТИРОВКИ И ТРУБ ДЛЯ ХОЗЯЙСТВЕННЫХ НУЖД | 2013 |
|
RU2535151C2 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ БИМЕТАЛЛИЧЕСКИХ ТРУБ РАЗМЕРОМ ВН.279Х36 (351Х36) И ВН.346Х40 (426Х40) ММ ИЗ СТАЛИ МАРОК 10ГН2МФА+08Х18Н10Т С ВНУТРЕННИМ ПЛАКИРУЮЩИМ СЛОЕМ СТАЛЬЮ 08Х18Н10Т ТОЛЩИНОЙ 7±2 ММ | 2012 |
|
RU2516137C1 |
СПОСОБ ПРОИЗВОДСТВА ТРЕХСЛОЙНЫХ ПОЛЫХ ЦЕНТРОБЕЖНО-ЛИТЫХ ЗАГОТОВОК ИЗ ТРУДНОДЕФОРМИРУЕМЫХ МАРОК СТАЛИ И СПЛАВОВ, ПЛАКИРОВАННЫХ ПЛАСТИЧНЫМИ УГЛЕРОДИСТЫМИ МАРКАМИ СТАЛИ, И ПРОКАТКИ ИЗ НИХ НА ТРУБОПРОКАТНЫХ УСТАНОВКАХ С ПИЛИГРИМОВЫМИ СТАНАМИ ГОРЯЧЕКАТАНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТОВАРНЫХ И ПЕРЕДЕЛЬНЫХ ТРУБ БОЛЬШОГО И СРЕДНЕГО ДИАМЕТРОВ | 2013 |
|
RU2550040C2 |
СПОСОБ ПРОИЗВОДСТВА БИМЕТАЛЛИЧЕСКИХ ТРУБ РАЗМЕРОМ 351×36 мм ДЛЯ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ ИЗ СТАЛИ МАРКИ 10ГН2МФА С ВНУТРЕННИМ ПЛАКИРУЮЩИМ СЛОЕМ ИЗ СТАЛИ 08Х18Н10Т | 2013 |
|
RU2545933C2 |
СПОСОБ ПРОИЗВОДСТВА БИМЕТАЛЛИЧЕСКИХ ТРУБ ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ РАЗМЕРОМ ВН.279×36 (351×36) мм ИЗ СТАЛЕЙ МАРОК 10ГН2МФА И 08Х18Н10Т С ВНУТРЕННИМ ПЛАКИРУЮЩИМ СЛОЕМ | 2012 |
|
RU2523382C2 |
Изобретение предназначено для снижения себестоимости и повышения качества длинномерных многослойных биметаллических труб большого диаметра для трубопроводов. Снижение металлоемкости трубопроводов, повышение их экологической безопасности обеспечивается за счет того, что производят трубы-заготовки намоткой на вращающийся барабан-шпулю многослойных по длине листов-штрипсов из сталей 08Х18Н10Т и 17ГСУ и последующую стыковую поперечную сварку труб-заготовок, при этом кромки листов перед сваркой в листы-штрипсы фрезеруют под углом 45°, сваривают стыковой сваркой под слоем флюса с последующей фрезеровкой сварных швов до номинальной толщины стенки свариваемых листов, а сварные швы на наружной поверхности многослойных труб смещают относительно швов на внутренней поверхности на регламентируемую величину, при этом толщину листов-штрипсов выбирают из условий эксплуатации биметаллических труб. 1 з.п. ф-лы.
1. Способ производства длинномерных многослойных биметаллических труб большого диаметра с повышенным ресурсом эксплуатации в агрессивных средах для транспортировки углеводородов с повышенным содержанием серы, характеризующийся тем, что производят трубы-заготовки намоткой на вращающийся барабан-шпулю многослойных по длине листов-штрипсов из сталей 08Х18Н10Т и 17ГСУ и последующую стыковую поперечную сварку труб-заготовок, при этом кромки листов перед сваркой в листы-штрипсы фрезеруют под углом 45°, сваривают стыковой сваркой под слоем флюса с последующей фрезеровкой сварных швов до номинальной толщины стенки свариваемых листов, а сварные швы на наружной поверхности многослойных труб смещают относительно швов на внутренней поверхности на величину, значения которой определяют из выражения:
Δсм=α-πδ(nΣ-n2)≥0,
где α=50 - величина смещения наружного сварного шва относительно внутреннего при изготовлении двухслойных биметаллических труб, мм;
nΣ - максимальное количество слоев при изготовлении многослойных биметаллических труб;
n2 =2 - количество слоев при изготовлении двухслойных труб;
δ - номинальная толщина стенки листа-штрипса, мм.
2. Способ по п.1, отличающийся тем, что толщину листов-штрипсов выбирают из условий эксплуатации биметаллических труб.
СПОСОБ ПРОИЗВОДСТВА БИМЕТАЛЛИЧЕСКИХ ЦЕНТРОБЕЖНО-ЛИТЫХ ЗАГОТОВОК И БИМЕТАЛЛИЧЕСКИХ ИЗНОСОСТОЙКИХ ТРУБ ДЛЯ ТРАНСПОРТИРОВКИ АБРАЗИВНЫХ СЫПУЧИХ МАТЕРИАЛОВ И ПУЛЬП НА ТРУБОПРОКАТНЫХ УСТАНОВКАХ С ПИЛИГРИМОВЫМИ СТАНАМИ | 2004 |
|
RU2278749C2 |
Способ изготовления многослойной спиральношовной трубы | 1981 |
|
SU1142200A1 |
Способ изготовления металлических кабельных оболочек | 1934 |
|
SU42172A1 |
Стан для изготовления двухслойных спиральношовных труб | 1968 |
|
SU276895A1 |
Битумоминеральная смесь | 1978 |
|
SU814937A1 |
. |
Авторы
Даты
2014-07-20—Публикация
2012-12-21—Подача