СПОСОБ ИЗМЕРЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ Российский патент 2014 года по МПК G01N33/48 

Описание патента на изобретение RU2523564C1

Изобретение относится к медицине и может быть использовано для электрохимического определения антиоксидантной активности биологических жидкостей, например плазмы или сыворотки крови.

В работе [Пахомов В.П., Яшин Я.И., Яшин А.Я., Багирова В.Л., Арзамасцев А.П., Кукес В.Г., Ших Е.В. Способ определения суммарной антиоксидантной активности биологически активных соединений // Патент РФ №2003123072/15 (024964). 2003] описан метод определения антиоксидантной активности, заключающийся в том, что на поверхности рабочего электрода происходит окисление молекул антиоксидантов, при этом возрастает электрический ток между двумя электродами. Величина тока зависит от природы анализируемого вещества, природы рабочего электрода и потенциала, приложенного к электроду. Рабочий электрод выполнен из стеклоуглерода.

Недостатками указанного способа являются:

- способ применим для определения антиоксидантной активности водных растворов растительных лекарственных препаратов, биологически активных добавок и напитков

- отсутствует предобработка электрода, позволяющая приводить поверхность электрода к одному и тому же состоянию перед каждым измерением.

Известен способ определения антиоксидантной активности индивидуальных веществ, основанный на электрохимическом поглощении кислорода. Окислительную реакцию в системе инициируют добавлением раствора метмиоглобина. Непосредственно после этого образец инжектируют в термостатированную до 25,0±0,1°C закрытую ячейку, обеспечивая при этом надежную защиту от попадания в систему кислорода. Поглощение кислорода определяют с помощью электрода Кларка. Относительную концентрацию (%) кислорода определяют через каждые 30 с (Шукун Ю., Кирстен Бойсен, Карстен Матиас Краг, Майя Бойко, Иохн Нильсен, Ян Маркуссен, Тове Мартель Ида Эльса Кристенсен. Способ получения сахара 1,5-D-ангидрофруктозы (варианты), антиоксидант, подслащиватель // Патент РФ №2140988. 1989).

Недостатками этого способа являются:

- способ является сложным и многоступенчатым

- способ определения длительный, не является экспрессным

- необходимо сложное герметичное оборудование

- расшифровка полученных данных требует специалиста высокой квалификации.

В работе [Ziyatdinova G.K., Budnikov Н.С., Pogorel'tzev V.I. Determination of total antioxidant capacity of human plasma from patients with lung diseases using constant - current coulometry // Eurasian Journal of Analytical Chemistry. 2006. V. 1. №1. pp.19-30] предложен способ количественного анализа антиоксидантной активности плазмы крови с использованием кулонометрического метода. Метод основан на реакции антиоксидантов плазмы с электрогенерируемым бромом. При электрохимическом окислении бромид иона на платиновом электроде в кислой среде образуются Br2, B r 3 и радикал Br.. Антиоксидантная активность выражается в количестве электричества (кулонах), затраченного на титрование 1 литра плазмы. В этой же работе предлагается для определения уровня антиоксидантов использовать вольтамперометрический метод. Компоненты плазмы окислялись на рабочем электроде из стеклоуглерода в фосфатном буфере при потенциале 380 мВ (относительно насыщенного хлорсеребряного электрода сравнения), при этом на кривой ток-потенциал наблюдается пик. Потенциал пика характеризует активность антиоксидантов. Величина анодного тока позволяет рассчитать концентрацию антиоксидантов в плазме.

Недостатками этого способа являются:

- использование кулонометрического метода требует использования дорогостоящей прецезионной аппаратуры

- пик, используемый для измерения величины тока, является размытым, что не позволяет точно определить положение точки максимума

- бром в виде радикала способен окислить не только антиоксиданты, но и другие соединения, содержащиеся в плазме, например белки плазмы.

Наиболее близким аналогом предлагаемого решения является способ определения оксидантной/антиоксидантной активности веществ [Брайнина Х.З., Иванова А.В. Способ определения антиоксидантной/оксидантной активности вещества // Патент WO 2004/044576 A1, 2004], заключающийся в том, что готовят исходный раствор, содержащий медиаторную систему, оксидантную/антиоксидантную активность оценивают по изменению потенциала электрода до и после введения в исходный раствор анализируемого вещества, концентрацию оксидантов/антиоксидантов рассчитывают по уравнению Нернста.

Недостатками данного способа являются:

- отсутствие предварительной обработки электрода, позволяющей приводить поверхность электрода к одному и том же состоянию перед каждым измерением, поскольку при определении содержания антиоксидантов в плазме или сыворотке крови на электроде возможна адсорбция белков, в результате которой потенциал электрода смещается от первоначального значения, учет этого фактора не предусмотрен

- определение количества антиоксидантов с помощью расчетов по уравнению Нернста предполагает проведение измерений в стандартных условиях, что невозможно реализовать на практике из-за постоянных нерегулярных изменений температуры окружающей среды и давления

- точность определения концентрации антиоксиданта по данному способу является весьма низкой, так как, например, добавление в раствор медиаторной пары физиологической концентрации антиоксиданта (около 3 ммоль/л) приводит к смещению величины потенциала электрода при разомкнутой цепи (ПРЦ) не более чем на 2,5%: при этом абсолютная величина ПРЦ в растворе медиаторной пары составляет около 80 мВ, тогда как после добавления антиоксиданта величина ПРЦ составляет 78 мВ

- величина антиоксидантной активности измерена в г-экв/л окислителя медиаторной пары, что исключает сопоставление полученных величин с данными, полученными с помощью известных методов

- экспрессное определение по данному способу невозможно, так как время установления ПРЦ платинового электрода составляет не менее 30 мин [Хубутия М.Ш., Евсеев А.К., Колесников В.А., Гольдин М.М., Давыдов А.Д., Волков А.Г., Степанов А.А. Измерения потенциала платинового электрода в крови, плазме и сыворотке крови // Электрохимия 2010. Т.46. №5. с.569-573].

Достигаемый технический результат позволяет с высокой точностью определить антиоксидантную активность биологических жидкостей, что подтверждается сопоставимостью полученных результатов с общепринятыми.

Способ осуществляется следующим образом.

Электрохимическую ячейку, снабженную рабочим микроэлектродом из платины, вспомогательным электродом из углеродного материала (например, терморасширенный графит (ТРГ), углеродная ткань) и хлорсеребряным электродом сравнения, заполняют 0,1 моль/л раствором сульфата натрия, затем платиновый электрод подвергают предварительной обработке, заключающейся в циклическом сканировании потенциала в диапазоне от 500 до -600 мВ шестьюдесятью циклами со скоростью развертки потенциала 750 мВ/с, затем производят сканирование потенциала в диапазоне от 200 до 350 мВ пятнадцатью циклами со скоростью развертки потенциала 750 мВ/с, в результате чего потенциал платинового электрода принимает постоянное значение 160 мВ. После указанной предобработки платинового электрода ячейку заполняют эквимолярным раствором медиаторной пары хинон/гидрохинон в буферном растворе с pH=7,40 и производят циклическое сканирование потенциала платинового электрода в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с. Затем в указанный раствор добавляют анализируемую пробу биологической жидкости в соотношении 1:1 и производят циклическое сканирование потенциала в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с. Концентрацию антиоксидантов в анализируемой пробе оценивают по разности между пиками тока на катодной ветви циклических вольтамперограмм, снятых до и после добавления анализируемой пробы. Затем для получения калибровочной зависимости катодного тока от концентрации антиоксиданта в указанный раствор медиаторной пары добавляют раствор антиоксиданта известной концентрации в диапазоне от 0,6 до 5,2 ммоль/л и измеряют разницу величин пиков восстановления хинона в отсутствие и присутствии антиоксиданта известной концентрации, причем в качестве модельного антиоксиданта используют раствор кверцетина.

Сопоставительный анализ заявляемого решения с известными способами показывает, что предлагаемый способ определения антиоксидантной активности биологических жидкостей позволяет уменьшить время проведения анализа, упростить определение концентрации, повысить точность измерений, сопоставлять полученные величины концентрации антиоксидантов с общепринятыми, повысить надежность результатов и воспроизводимость определения концентрации антиоксидантов.

Пример 1. Предобработка рабочего электрода проводилась в электрохимической ячейке, снабженной рабочим микроэлектродом из платины, вспомогательным электродом из терморасширенного графита (ТРГ) и хлорсеребряным электродом, в растворе 0,1 моль/л сульфата натрия с помощью циклического сканирования потенциала от 500 до -600 мВ шестьюдесятью циклами со скоростью развертки потенциала 750 мВ/с, затем производили сканирование потенциала в диапазоне от 200 до 350 мВ пятнадцатью циклами со скоростью развертки потенциала 750 мВ/с. После предобработки ячейку заполняли эквимолярным раствором медиаторной пары хинон/гидрохинон в фосфатном буферном растворе с pH=7,40, после чего производили циклическое сканирование потенциала платинового электрода в режиме от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с. Затем для получения калибровочной зависимости катодного тока от концентрации антиоксиданта в указанный раствор добавляли раствор кверцетина известной концентрации в диапазоне от 0,6 до 5,2 ммоль/л и измеряли разницу величин пиков восстановления хинона в отсутствие и присутствии кверцетина известной концентрации.

Для определения концентрации антиоксидантов в плазме в раствор указанной медиаторной пары в соотношении 1:1 добавляли анализируемую пробу в виде плазмы донора и вновь производили циклическое сканирование потенциала в указанном режиме. Концентрацию антиоксидантов в пробе оценивали по разности величин пиков тока восстановления хинона в отсутствии и присутствии анализируемой пробы. По калибровочному графику определяли концентрацию антиоксидантов в анализируемой пробе по кверцетину, она составила 2,30 ммоль/л. Измерения концентрации антиоксидантов проводили 5 раз, доверительный интервал составил ±0,03 ммоль/л. Концентрацию антиоксидантов в данной пробе плазмы донора определялась также независимым, спектрофотометрическим методом TAS «Randox», концентрация антиоксидантов в анализируемой пробе составила 2,32 ммоль/л.

Пример 2. Предобработка рабочего электрода проводилась в электрохимической ячейке, снабженной рабочим микроэлектродом из платины, вспомогательным электродом из углеродной ткани Карбон плетения twill плотностью 200 г/м2 и хлорсеребряным электродом, в растворе 0,1 моль/л сульфата натрия с помощью циклического сканирования потенциала от 500 до -600 мВ шестьюдесятью циклами со скоростью развертки потенциала 750 мВ/с, затем производили сканирование потенциала в диапазоне от 200 до 350 мВ пятнадцатью циклами со скоростью развертки потенциала 750 мВ/с. После предобработки ячейку заполняли эквимолярным раствором медиаторной пары хинон/гидрохинон в фосфатном буферном растворе с pH=7,40, после чего производили циклическое сканирование потенциала платинового электрода в режиме от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с. Затем для получения калибровочной зависимости катодного тока от концентрации антиоксиданта в указанный раствор добавляли раствор кверцетина известной концентрации в диапазоне от 0,6 до 5,2 ммоль/л и измеряли разницу величин пиков восстановления хинона в отсутствие и присутствии кверцетина известной концентрации.

Для определения концентрации антиоксидантов в плазме в раствор указанной медиаторной пары в соотношении 1:1 добавляли анализируемую пробу в виде плазмы донора и вновь производили циклическое сканирование потенциала в указанном режиме. Концентрацию антиоксидантов в пробе оценивали по разности величин пиков тока восстановления хинона в отсутствие и присутствии анализируемой пробы. По калибровочному графику определяли концентрацию антиоксидантов в анализируемой пробе по кверцетину, она составила 2,30 ммоль/л. Измерения концентрации антиоксидантов проводили 5 раз, доверительный интервал составил±0,03 ммоль/л. Концентрацию антиоксидантов в данной пробе плазмы донора определялся также независимым, спектрофотометрическим методом TAS «Randox», концентрация антиоксидантов в анализируемой пробе составила 2,32 ммоль/л.

Пример 3. Определение уровня антиоксидантной активности вели как в примере 1, но не производили предобработку рабочего электрода из платины. По калибровочному графику определяли концентрацию антиоксидантов в анализируемой пробе по кверцетину, она составила 2,49 ммоль/л. Измерения концентрации антиоксидантов проводили пять раз, доверительный интервал составил ±1,12 ммоль/л. Затем уровень антиоксидантов в данной пробе плазмы донора определяли независимым спектрофотометрическим методом TAS «Randox», концентрация антиоксидантов в анализируемой пробе составила 2,30 ммоль/л. Таким образом, без предобработки рабочего электрода из платины не удалось достичь высокой воспроизводимости результатов и их сходимости с методом TAS «Randox».

Похожие патенты RU2523564C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ РЕДОКС ПОТЕНЦИАЛА БИОЛОГИЧЕСКИХ СРЕД 2012
  • Хубутия Могели Шалвович
  • Ваграмян Тигран Ашотович
  • Гольдин Марк Михайлович
  • Степанов Андрей Александрович
  • Ян-Борисова Лариса Михайловна
  • Евсеев Анатолий Константинович
RU2497107C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОКСИДАНТНОЙ/АНТИОКСИДАНТНОЙ АКТИВНОСТИ РАСТВОРОВ 2002
  • Брайнина Х.З.
  • Иванова А.В.
RU2235998C2
СПОСОБ МОНИТОРИНГА СОСТОЯНИЯ ПАЦИЕНТА ПОСЛЕ ТРАНСПЛАНТАЦИИ ОРГАНА 2013
  • Хубутия Могели Шалвович
  • Пинчук Алексей Валерьевич
  • Евсеев Анатолий Константинович
  • Гольдин Марк Михайлович
RU2560705C2
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕГРАЛЬНОЙ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ ОРГАНИЧЕСКИХ КОНДЕНСИРОВАННЫХ СРЕД 2015
  • Брайнина Хьена Залмановна
  • Ходос Марк Яковлевич
  • Захаров Александр Сергеевич
RU2595814C1
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ ЕМКОСТИ ВЕЩЕСТВ 2023
  • Иванова Алла Владимировна
  • Маркина Мария Геннадьевна
  • Герасимова Елена Леонидовна
  • Кириллова Виктория Ивановна
RU2825002C1
СПОСОБ ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ СЕЛЕНА 2005
  • Соколов Михаил Андреевич
  • Алексеева Наталья Александровна
RU2300759C2
Способ дифференцированного применения гипербарической оксигенации (ГБО) для пациентов с опухолями репродуктивной системы после трансплантации печени 2019
  • Бабкина Анна Васильевна
  • Левина Ольга Аркадьевна
  • Гринь Андрей Анатольевич
  • Евсеев Анатолий Константинович
  • Горончаровская Ирина Викторовна
  • Хватов Валерий Борисович
  • Шабанов Аслан Курбанович
  • Воронина Валентина Николаевна
  • Ржевская Ольга Николаевна
  • Петриков Сергей Сергеевич
RU2735758C1
СПОСОБ ОПРЕДЕЛЕНИЯ СУММАРНОЙ АНТИОКСИДАНТНОЙ АКТИВНОСТИ ЭКСТРАКТОВ ЧАЕВ МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ НА МОДИФИЦИРОВАННОМ ЭЛЕКТРОДЕ 2013
  • Дорожко Елена Владимировна
  • Воронова Олеся Александровна
  • Короткова Елена Ивановна
  • Плотников Евгений Владимирович
RU2567727C2
Способ дифференцированного применения гипербарической оксигенации (ГБО) для пациентов с опухолями репродуктивной системы после трансплантации почки 2019
  • Бабкина Анна Васильевна
  • Левина Ольга Аркадьевна
  • Гринь Андрей Анатольевич
  • Евсеев Анатолий Константинович
  • Горончаровская Ирина Викторовна
  • Хватов Валерий Борисович
  • Шабанов Аслан Курбанович
  • Воронина Валентина Николаевна
  • Черкесов Игорь Владимирович
  • Ржевская Ольга Николаевна
  • Петриков Сергей Сергеевич
RU2735995C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОКСИДАНТНОЙ/АНТИОКСИДАНТНОЙ АКТИВНОСТИ ВЕЩЕСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Брайнина Хьена Залмановна
  • Герасимова Елена Леонидовна
  • Ходос Марк Яковлевич
  • Викулова Екатерина Владимировна
  • Чернов Владимир Ильич
  • Носкова Галина Николаевна
RU2486499C1

Реферат патента 2014 года СПОСОБ ИЗМЕРЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ

Изобретение относится к медицине и может быть использовано для электрохимического определения антиоксидантной активности биологических жидкостей, например плазмы или сыворотки крови. Способ включает приготовление эквимолярного водного раствора медиаторной пары хинон/гидрохинон в фосфатном буфере с pH=7,40, добавление анализируемой пробы в виде биологической жидкости-плазмы или сыворотки крови к медиаторной паре и погружение в приготовленный раствор медиатора с добавкой анализируемой пробы вспомогательного электрода из углеродного материала и хлорсеребряного электрода сравнения, причем предварительно рабочий электрод из платины обрабатывают в 0,1 моль/л растворе сульфата натрия с помощью циклического сканирования потенциала от 500 до -600 мВ шестьюдесятью циклами со скоростью развертки потенциала 750 мВ/с, а затем производят сканирование потенциала в диапазоне от 200 до 350 мВ пятнадцатью циклами со скоростью развертки потенциала 750 мВ/с, после чего указанный электрод сначала погружают в приготовленный раствор медиаторной пары и производят циклическое сканирование потенциала в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с и после этого в указанный раствор добавляют анализируемую пробу биологической жидкости в соотношении 1:1 и производят циклическое сканирование потенциала в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с, концентрацию антиоксидантов в пробе оценивают по разности между пиками тока на катодной ветви циклических вольтамперограмм, снятых до и после добавления анализируемой пробы в виде биологической жидкости к раствору медиаторной пары. Достигается повышение точности и надежности измерения. 2 з.п. ф-лы, 3 пр.

Формула изобретения RU 2 523 564 C1

1. Способ измерения антиоксидантной активности биологических жидкостей, включающий приготовление эквимолярного водного раствора медиаторной пары хинон/гидрохинон в фосфатном буфере с pH=7,40, добавление анализируемой пробы в виде биологической жидкости-плазмы или сыворотки крови к медиаторной паре и погружение в приготовленный раствор медиатора с добавкой анализируемой пробы вспомогательного электрода из углеродного материала и хлорсеребряного электрода сравнения, отличающийся тем, что предварительно рабочий электрод из платины обрабатывают в 0,1 моль/л растворе сульфата натрия с помощью циклического сканирования потенциала от 500 до -600 мВ шестьюдесятью циклами со скоростью развертки потенциала 750 мВ/с, а затем производят сканирование потенциала в диапазоне от 200 до 350 мВ пятнадцатью циклами со скоростью развертки потенциала 750 мВ/с, после чего указанный электрод сначала погружают в приготовленный раствор медиаторной пары и производят циклическое сканирование потенциала в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с и после этого в указанный раствор добавляют анализируемую пробу биологической жидкости в соотношении 1:1 и производят циклическое сканирование потенциала в диапазоне от -600 до 800 мВ шестью циклами со скоростью развертки потенциала 500 мВ/с, концентрацию антиоксидантов в пробе оценивают по разности между пиками тока на катодной ветви циклических вольтамперограмм, снятых до и после добавления анализируемой пробы в виде биологической жидкости к раствору медиаторной пары.

2. Способ по п.1, отличающийся тем, что в качестве углеродного материала используют термически расширенный графит.

3. Способ по п.1, отличающийся тем, что в качестве углеродного материала используют углеродную ткань.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523564C1

Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
СРЕДСТВО ОЦЕНКИ АНТИОКИСЛИТЕЛЬНОЙ АКТИВНОСТИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ И БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ 2007
  • Иванова Ирина Павловна
  • Кириллов Алексей Александрович
  • Зуймач Елена Анатольевна
RU2337359C1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ СУММАРНОЙ АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ МЕТОДОМ КАТОДНОЙ ВОЛЬТАМПЕРОМЕТРИИ 2010
  • Короткова Елена Ивановна
  • Дорожко Елена Владимировна
  • Букель Мария Владимировна
  • Плотников Евгений Владимирович
RU2449275C2
СПОСОБ НЕИНВАЗИВНОГО ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ОКСИДАНТ/АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОЛОГИЧЕСКИХ ТКАНЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Брайнина Хьена Залмановна
  • Герасимова Елена Леонидовна
  • Ходос Марк Яковлевич
RU2433405C1
СПОСОБ ОПРЕДЕЛЕНИЯ СУММАРНОЙ АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ 2007
  • Конарев Александр Андреевич
  • Фельдман Борис Маркович
  • Косачева Татьяна Петровна
  • Конарева Вера Васильевна
RU2356050C1
ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СУММАРНОЙ АКТИВНОСТИ АНТИОКСИДАНТОВ 2002
  • Короткова Е.И.
  • Карбаинов Ю.А.
RU2224997C1
ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ АНТИОКСИДАНТОВ 2010
  • Лисецкий Владимир Николаевич
  • Баталова Валентина Николаевна
  • Лисецкая Татьяна Александровна
RU2426109C1

RU 2 523 564 C1

Авторы

Хубутия Могели Шалвович

Гараева Гузель Рафаиловна

Гольдин Марк Михайлович

Евсеев Анатолий Константинович

Клычникова Елена Валерьевна

Степанов Андрей Александрович

Даты

2014-07-20Публикация

2012-12-03Подача