СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ Российский патент 2014 года по МПК C04B35/16 

Описание патента на изобретение RU2524095C1

Изобретение относится к технологии получения композиционных керамических изделий из горных пород с использованием связующего.

Известен способ получения базальтовой керамики методом спекания, исходным сырьем для которого является порошок плавленного базальта с размером частиц 0,5-60 мкм. Полученный порошок перемешивают с 3-10 масс.% парафина, прессуют под давлением 300-1800 кг/см2, подвергают предварительному обжигу при 800-900°C, затем повышают температуру до 1100°C, при которой изделие выдерживают 2 часа. Общий период спекания составляет 24 часа. Недостатком известного способа является высокая температура спекания и многостадийность процесса получения каменно-керамических изделий [Пеликан Л. Плавленые камни. М.: «Металлургиздат», 1959, с. 199-200].

Наиболее близким по технической сущности является способ получения керамических изделий, включающий приготовление формовочной массы из горных пород основной группы в качестве наполнителя и связующего, формование из полученной формовочной массы изделий и их термообработку. Приготовление массы осуществляют путем смешивания 80-95 мас.% наполнителя из горных пород основной группы с размером частиц 50-500 мкм и влажностью не более 5% с 5-20 мас.% фосфорной кислоты плотностью 1,50-1,55 г/см3, взятой в качестве связующего. Далее осуществляют выдержку полученной смеси при температуре 10-30°C в течение 24-72 ч и последующую термообработку при температуре 100-300°C [Патент RU 2361844, от 16.08.2007, опубл. 20. 07.2009]. В качестве наполнителя использованы горные породы основной группы. Недостатком известного способа является недостаточно высокая плотность и химическая устойчивость к действию соляной и серной кислот, а также повышенное водопоглощение спеченных каменно-керамических изделий.

Задачей изобретения является улучшение физико-технических свойств керамических изделий.

Достигается это тем, что в способе получения композиционных керамических изделий, включающий приготовление формовочной массы в качестве наполнителя из горных пород и связующего в виде фосфорной кислоты, выдержку полученной смеси, формование из полученной массы изделий и последующую термообработку, приготовление формовочной массы осуществляют путем классификации по крупности, с выделением фракций наполнителя -1,0+0,315, -0,315+0,08 и -0,08+0,042, при соотношении фракций 6:3:1 в виде кварцевого порфира или гранита или липарита в количестве 65-72 масс.%, который смешивают с фосфорной кислотой в количестве 25-30 масс.% и стекловолокном при отношении длины волокна к его диаметру от 5000 до 6000 в количестве 3-5 масс.%, выдерживают при температуре 20-30°C в течение 25-40 часов, подвергают формованию при давлении 35-45 МПа и последующей термообработке при температуре 350-380°C в течение 1,5 часов.

В этом состоит новый технический результат, находящийся в причинно-следственной связи с существенными признаками изобретения.

Кварцевый порфир, гранит, липарит относятся по происхождению к магматическим интрузивным породам кислой и ультракислой группы, содержащим более 70% SiO2. По содержанию SiO2 существенно отличаются от горных пород основной группы (по прототипу).

Усредненный химический состав кварцевого порфира (масс.%): SiO2-72,36; TiO2-0,33; Al2O3-14,17; Fe2O3-1,55; FeO-1,01; MnO-0,09; CaO-1,38; MgO-0,52; Na2O-2,85; K2O-4,46; SO3-0,1; P2O5-0,09. Кварцевый порфир минералогически состоит из кварца (до 20%), ортоклаза (40-90%), плагиоклаза (10-60%).

Усредненный химический состав гранита(масс.%): SiO2-75,17; TiO2-0,54; Al2O3-12,27; Fe2O3-2,58; FeO-1,29; MnO-0,14; CaO-1,71; MgO-1,8; Na2O-2,3; K2O-0,71; SO3-0,1. Минералогически гранит представлен, в основном, кварцем от 20 до 40, ортоклазом от 40 до 60, слюдой от 5 до 20.

Усредненный химический состав липарита (масс.%): SiO2-72,80; TiO2-0,33; Al2O3-13,49; Fe2O3-1,45; FeO-0,88; MnO-0,08; CaO-1,20; MgO-0,38; Na2O-3,38; K2O-4,46; SO3-0,1; P2O5-0,08. Минералогически липарит, как и гранит, представлен, в основном, кварцем от 20 до 40, ортоклазом от 40 до 60, слюдой от 5 до 20.

Использование кварцевого порфира или гранита или липарита в качестве наполнителя композиционного керамического материала связано с их минералогическим составом, включающим в себя помимо полевых шпатов в виде ортоклаза минерал кварца в значительных количествах.

Зерна кварца выступают в качестве неизменного скелета, не вступающего практически во взаимодействие с фосфорной кислотой и придающие готовому изделию повышенную плотность и химическую стойкость к большинству кислот. Функционально зерна кварца в композиционном материале являются дисперсно-упрочняющей добавкой. Для усиления армирующего эффекта создания плотного и стойкого к агрессивным средам скелета дополнительно в состав наполнителя вводятся стекловолокна определенных геометрических размеров: длиной 15-20 мм при отношении длины волокна к его диаметру от 5000 до 6000. Усредненный химический состав стекловолокон соответствует (масс.%): SiO2-58,20; TiO2-2,50; Al2O3-11,60; Fe2O3-0,10; ZnO-2,90; CaO-21,70; MgO-2,00; Na2O-1,00; K2O-0,20. Приведенный химический состав и геометрические параметры стекловолокон определяют высокую химическую стойкость волокон. В качестве материала матрицы композиционного материала выступают продукты взаимодействия полевых шпатов из кварцевого порфира или гранита или липарита и фосфорной кислоты с образованием монолитной массы из ортофосфатов, в первую очередь, ортофосфатов алюминия. Композиционный материал с использованием кварцевого порфира или гранита или липарита в сочетании со стекловолокном обеспечивает повышенную химическую стойкость композиционных керамических изделий.

Примеры осуществления заявляемого способа и прототипа сведены в таблицу 1.

Способ изготовления композиционного керамического изделия реализуется следующим образом.

Кварцевый порфир или липарит или гранит измельчается в различных измельчительных агрегатах (дробилки щековые, конусные, валковые, роторные, барабанные; мельницы шаровые, стержневые, вибрационные, планетарные и др.) с последующим выделением на грохотах фракций -1,0+0,315, -0,315+0,08 и -0,08+0,042, смешиваемых в соотношении фракций 6:3:1 в стержневом смесителе, куда в дальнейшем добавляется стекловолокно длиной 15-20 мм при отношении длины волокна к его диаметру от 5000 до 6000 и далее фосфорная кислота при следующем соотношении компонентов сырьевой смеси, масс.%:

кварцевый порфир или гранит или липарит 65-72 стекловолокно 3-5 фосфорная кислота 25-30

Полученную смесь выдерживают при температуре 20-30°C в течение 25-40 часов, подвергают прессованию при давлении 35-45 МПа, термообработке при температуре 350-380°C в течение 1,5 ч. Физико-технические свойства композиционных керамических изделий при различном наполнителе и количестве при соотношении фракций -1,0+0,315, -0,315+0,08 и -0,08+0,042 соответственно 6:3:1 при давлении 45 МПа и температуре термообработки 380°C представлены в таблицах 1, 2, 3, 4, 5.

Таблица 1 Вид наполните ля Содержание горной породы, масс.% Содержание стекловoлок-
на, масс.%
Содержание фосфорной кислоты, масс.% Химическая стойкость к серной кислоте, % Химическая стойкость к соляной кислоте, % Водопоглощение, % Плотность, г/см3
По прототипу Габбро, диабаз, базальт 80-95 76,2-98,7 71,6-90,2 0,9-6,2 0,6-2,6 Кварцевый порфир (по заявляемому способу) 61 9 30 98,5 88,3 1,50 2,60 63 7 30 99,0 92,0 0,87 2,69 65 5 30 99,3 92,2 0,70 2,80 69 4 27 99,2 91,9 0,80 2,75 72 3 25 99,2 91,4 0,85 2,73 74 2 24 99,0 91,0 0,88 2,70 76 1 23 98,6 85,4 1,60 2,45 Липарит (по заявляемому способу) 61 9 30 98,0 85,0 0,98 2,55 63 7 30 98,5 91,5 0,88 2,70 65 5 30 99,6 92,4 0,75 2,82 69 4 27 99,4 92,2 0,80 2,80 72 3 25 99,2 92,0 0,80 2,75 74 2 24 98,7 91,8 0,88 2,69 76 1 23 98,2 88,5 0,97 2,33 Гранит (по заявляемому способу) 61 9 30 98,1 87,9 1,60 2,67 63 7 30 98,5 91,2 0,84 2,71 65 5 30 99,4 92,4 0,72 2,81 69 4 27 99,2 92,1 0,75 2,81 72 3 25 99,2 92,1 0,78 2,75 74 2 24 98,5 91,5 0,84 2,63 76 1 23 98,4 87,4 1,42 2,43

Анализ данных таблицы 1 свидетельствует, что максимальная устойчивость к действию концентрированных соляной и серной кислот, минимальное водопоглощение и максимальная плотность соответствует заявляемому содержанию кварцевого порфира или гранита или липарита в пределах 65-72 масс.%, стекловолокна 3-5 масс.%, фосфорной кислоты 25-30 масс.%.

Физико-технические свойства керамических изделий при постоянном содержании наполнителя в виде горной породы в 65 масс.%) и стекловолокна в 5 масс.% на различных примерах использования горных пород при различном соотношении фракций -1,0+0,315, -0,315+0,08 и -0,08+0,042 при давлении 45 МПа и температуре термообработки 380°C представлены в таблице 2.

Таблица 2 Вид наполнителя Соотношение фракций - 1,0+0,315,- 0,315+0,08 и -0,08+0,042 Химическая
стойкость к серной кислоте, %
Химическая
стойкость к соляной кислоте, %
Водопоглощение, % Плотность, г/см3
Кварцевый порфир (по заявляемому способу) 4:4:2 98,8 89,8 0,80 2,70 5:2:3 98,8 90,0 0,75 2,75 6:3:1 99,3 92,2 0,70 2,80 7:2:1 98,8 90,0 0,78 2,72 8:1:1 89,1 90,8 0,79 2,70 Липарит (по заявляемому способу) 4:4:2 89,4 90,8 0,82 2,79 5:2:3 99,0 91,4 0,78 2,80 6:3:1 99,6 92,4 0,75 2,82 7:2:1 99,2 90,0 0,79 2,80 8:1:1 98,7 90,2 0,82 2,71 Гранит (по заявляемому способу) 4:4:2 99,0 91,0 0,84 2,79 5:2:3 99,1 91,3 0,75 2,80 6:3:1 99,4 92,4 0,72 2,81 7:2:1 99,0 90,4 0,84 2,81 8:1:1 98,9 90,2 0,84 2,72

Анализ данных таблицы 2 свидетельствует, что максимальная устойчивость к действию концентрированных соляной и серной кислот, минимальное водопоглощение и максимальная плотность соответствует заявляемому соотношению фракций 6:3:1.

Физико-технические свойства композиционных керамических изделий при постоянном содержании наполнителя в виде горной породы в 65 масс.% и стекловолокна в 5 масс.% на различных примерах использования горных пород при оптимальном соотношении фракций 6:3:1 при температуре термообработки 380°C при различном давлении прессования представлены в таблице 3.

Таблица 3 Вид наполнителя Давление формования, МПа Химическая стойкость к серной кислоте, % Химическая стойкость к соляной кислоте, % Водопоглощение, % Плотность, г/см3 Кварцевый порфир (по заявляемому способу) 30 99,0 89,4 1,68 2,68 35 99,2 90,2 0,78 2,78 40 99,2 92,2 0,74 2,80 45 99,3 92,2 0,70 2,80 50 Наблюдается перепрессовка 98,5 84,5 1,50 2,64 Липарит (по заявляемому способу) 30 98,9 89„4 1,80 2,62 35 99,4 91,6 0,82 2,78 40 99,5 91,8 0,78 2,78 45 99,6 92,4 0,75 2,82 50 Наблюдается перепрессовка Гранит (по заявляемому способу) 30 98,9 88,8 1,95 2,60 35 99,6 90,0 0,75 2,80 40 99,6 91,9 0,74 2,80 45 99,4 92,4 0,72 2,81 50 Наблюдается 98,5 82,4 1,58 2,34

перепрессовка

Анализ данных таблицы 3 свидетельствует, что максимальная устойчивость к действию концентрированных соляной и серной кислот, минимальное водопоглощение и максимальная плотность соответствует заявляемому оптимальному диапазону давления формования 35-45 МПа.

Физико-технические свойства композиционных керамических изделий при постоянном содержании наполнителя в виде горной породы в 65 масс.% и стекловолокна в 5 масс.% на различных примерах использования горных пород при оптимальном соотношении фракций 6:3:1 при оптимальном давлении прессования 45МПа при различной температуре термообработки с интервалом в 50°С представлены в таблице 4.

Таблица 4 Вид наполнителя Температура термообработки, °С Химическая стойкость к серной кислоте, % Химическая стойкость к соляной кислоте, % Водопоглощение, % Плотность, г/см3 Кварцевый порфир (по заявляемому способу) 300 98,3 88,4 1,60 2,60 350 99,2 92,1 0,75 2,72 380 99,3 92,2 0,70 2,80 430 98,0 90,0 1,84 2,58 Липарит (по заявляемому способу) 300 98,2 90,0 1,63 2,52 350 99,4 92,2 0,78 2,79 380 99,6 92,4 0,75 2,82 430 98,2 90,2 1,92 2,54 Гранит (по заявляемому способу) 300 97,9 89,0 1,85 2,47 350 99,3 92,2 0,75 2,80 380 99,4 92,4 0,72 2,81 430 98,1 89,9 1,88 2,51

Анализ данных таблицы 4 свидетельствует, что максимальная устойчивость к действию концентрированных соляной и серной кислот, минимальное водопоглощение и максимальная плотность соответствует заявляемому оптимальному диапазону температур термообработки 350-380°С.

Физико-технические свойства композиционных керамических изделий при постоянном содержании наполнителя в виде горной породы в 65 масс.% и стекловолокна в 5 масс.% на различных примерах использования горных пород при оптимальном соотношении фракций 6:3:1 при оптимальном давлении прессования 45МПа при оптимальной температуре термообработки в 350°С при различном соотношении длины стекловолокна к диаметру представлены в таблице 5.

Таблица 5 Вид наполнителя Соотношение длины стекловолокна к диаметру Химическая стойкость к серной кислоте, % Химическая стойкость к соляной кислоте, % Водопоглощение, % Плотность, г/см3 Кварцевый порфир (по заявляемому способу) 4000 98,5 88,2 1,62 2,62 5000 99,2 92,1 0,75 2,72 6000 99,3 92,2 0,70 2,80 7000 98,1 90,1 1,85 2,59 Липарит (по заявляемому способу) 4000 98,4 90,1 1,64 2,55 5000 99,4 92,2 0,78 2,79 6000 99,6 92,4 0,75 2,82 7000 98,2 90,3 1,93 2,56 Гранит (по заявляемому способу) 4000 97,8 89,2 1,88 2,45 5000 99,3 92,2 0,75 2,80 6000 99,4 92,4 0,72 2,81 7000 98,2 89,9 1,89 2,53

Анализ данных таблицы 5 свидетельствует, что максимальная устойчивость к действию концентрированных соляной и серной кислот, минимальное водопоглощение и максимальная плотность соответствует заявляемому оптимальному диапазону соотношении длины стекловолокна к диаметру 5000-6000.

Технический результат предлагаемого способа композиционных керамических изделий заключается в повышении плотности и химической устойчивости изделий, а также снижении водопоглощения спеченных керамических масс.

Похожие патенты RU2524095C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Кренев Владимир Александрович
  • Еременко Игорь Леонидович
  • Кузнецов Николай Тимофеевич
  • Новоторцев Владимир Михайлович
  • Гавричев Константин Сергеевич
  • Бабиевская Ирина Зиновьевна
  • Дергачева Нина Петровна
  • Дробот Наталия Федоровна
  • Ермаков Владимир Анатольевич
RU2361844C2
Способ дифференциации разреза горных пород 1983
  • Волков Игорь Дмитриевич
  • Русанов Николай Александрович
  • Трошкин Юрий Николаевич
  • Постельников Андрей Федорович
SU1167561A1
Фритта для эмалевого покрытия 1980
  • Кондин Владимир Федорович
  • Мишина Валентина Михайловна
  • Алехин Анатолий Михайлович
SU947107A1
СПОСОБ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ НА ОСНОВЕ КРЕМНЕЗЕМСОДЕРЖАЩЕГО СВЯЗУЮЩЕГО 2009
  • Халухаев Гелани Асманович
  • Кондратенко Александр Николаевич
  • Кривобородов Юрий Романович
RU2443660C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ВЯЖУЩЕГО (ВАРИАНТЫ) 2000
  • Хардаев П.К.
  • Цыремпилов А.Д.
  • Семенов А.П.
  • Смирнягина Н.Н.
  • Дамдинова Д.Р.
RU2196748C2
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ИСКУССТВЕННЫХ ПОРИСТЫХ ЗАПОЛНИТЕЛЕЙ 1994
  • Лузин В.П.
  • Лузина Л.П.
  • Ведерников Н.Н.
  • Тюрин А.Н.
  • Архиреев В.П.
  • Кузнецова О.Н.
RU2083613C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОСТОЙКОГО КОМПОЗИЦИОННОГО ИЗДЕЛИЯ (ВАРИАНТЫ) И КОМПОЗИЦИОННОЕ ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ЭТИМ СПОСОБОМ 2008
RU2375386C1
Способ получения конструкционного материала 2019
  • Галимов Геннадий Гильфанович
  • Гарипов Ильсур Наилевич
  • Гарипов Альберт Ильсурович
RU2742766C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ОБЛИЦОВОЧНОЙ КЕРАМИКИ 2011
  • Еромасов Роман Георгиевич
  • Никифорова Элеонора Михайловна
RU2476405C1
Композиционный материал из углеткани и фосфатного связующего и способ его получения 2023
  • Андрианова Кристина Александровна
  • Амирова Лилия Миниахмедовна
  • Гайфутдинов Амир Марсович
  • Таишев Булат Рустамович
RU2808804C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Изобретение относится к технологии получения композиционных керамических изделий из горных пород с использованием связующего.

Способ получения композиционных керамических изделий, включающий приготовление формовочной массы в качестве наполнителя из горных пород и связующего в виде фосфорной кислоты, выдержку полученной смеси, формование из полученной массы изделий и последующую термообработку, приготовление формовочной массы осуществляют путем классификации по крупности, с выделением фракций наполнителя -1,0+0,315, -0,315+0,08 и -0,08+0,042, при соотношении фракций 6:3:1 в виде кварцевого порфира или гранита или липарита в количестве 65-72 мас.%, который смешивают с фосфорной кислотой в количестве 25-30 мас.% и стекловолокном при отношении длины волокна к его диаметру от 5000 до 6000 в количестве 3-5 мас.%, выдерживают при температуре 20-30°C в течение 25-40 часов, подвергают формованию при давлении 35-45 МПа и последующей термообработке при температуре 350-380°C в течение 1,5 часов. Технический результат предлагаемого способа композиционных керамических изделий заключается в повышении плотности и химической устойчивости изделий, а также снижении водопоглощения спеченных керамических масс. 5 табл.

Формула изобретения RU 2 524 095 C1

Способ получения композиционных керамических изделий, включающий приготовление формовочной массы в качестве наполнителя из горных пород и связующего в виде фосфорной кислоты, выдержку полученной смеси, формование из полученной массы изделий и последующую термообработку, отличающийся тем, что приготовление формовочной массы осуществляют путем классификации по крупности, с выделением фракций наполнителя -1,0+0,315, -0,315+0,08 и -0,08+0,042, при соотношении фракций 6:3:1 в виде кварцевого порфира или гранита или липарита в количестве 65-72 мас.%, который смешивают с фосфорной кислотой в количестве 25-30 мас.% и стекловолокном при отношении длины волокна к его диаметру от 5000 до 6000 в количестве 3-5 мас.%, выдерживают при температуре 20-30°C в течение 25-40 часов, подвергают формованию при давлении 35-45 МПа и последующей термообработке при температуре 350-380°C в течение 1,5 часов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2524095C1

СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Кренев Владимир Александрович
  • Еременко Игорь Леонидович
  • Кузнецов Николай Тимофеевич
  • Новоторцев Владимир Михайлович
  • Гавричев Константин Сергеевич
  • Бабиевская Ирина Зиновьевна
  • Дергачева Нина Петровна
  • Дробот Наталия Федоровна
  • Ермаков Владимир Анатольевич
RU2361844C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ КРЕМНЕЗЕМСОДЕРЖАЩЕГО СВЯЗУЮЩЕГО 2005
  • Кондратенко Александр Николаевич
  • Кривобородов Юрий Романович
  • Подосинников Олег Павлович
RU2283818C1
Угольный комбайн для крутопадающих пластов 1955
  • Балыков В.М.
  • Топчиев А.В.
SU115479A1
Устройство для загрузки зерном железнодорожных вагонов 1956
  • Докучаев И.М.
SU107059A1
WO 2012056822 A1 03.05.2012

RU 2 524 095 C1

Авторы

Никифорова Элеонора Михайловна

Еромасов Роман Георгиевич

Кравцова Елена Дагриевна

Спектор Юрий Ефимович

Даты

2014-07-27Публикация

2013-04-16Подача