СПОСОБ ФЛОТАЦИИ РУД Российский патент 2014 года по МПК B03D1/02 

Описание патента на изобретение RU2524701C1

Изобретение относится к области обогащения полезных ископаемых, в частности к выбору флотационных реагентов для флотации руд.

Известен способ обогащения сульфидных руд, в котором дополнительно к основному сульфгидрильному собирателю добавляют реагент, снижающий флотируемость минералов [Патент 2379116 С1. Способ флотации сульфидных руд цветных металлов. Бочаров В.А., Игнаткина В.А. и др. Опубл. 20.01.2010, Бюл.№2].

Недостатком способа является то, что подбор реагентов осуществляется без достаточного научного обоснования.

Наиболее близким по технической сущности и достигаемому результату является способ, заключающийся в применении сочетаний собирателей при флотации труднообогатимых руд цветных металлов [Игнаткина В.А. Развитие теории селективности действия сочетаний собирателей при флотации труднообогатимых руд цветных металлов. Автореферат. Москва. НАТУ МИСиС, 2011 г.; «Горный информационно-аналитический бюллетень» 2006. №12. С.334-340. Ст. Игнаткина В.А., Бочаров В.А. «Основные принципы выбора селективных собирателей при флотации минералов с близкими флотационными свойствами»].

Недостатком является то, что сочетание реагентов определяется в результате длительных экспериментальных работ и смесь определяется из уже известных реагентов. Создание композиции реагентов, как правило, не поддается количественной оценке, а чтобы добиться хорошей селекции при флотации полиметаллических руд необходимо использовать три фактора:

- химическую активность собирателя (прочность связи его терминальной группы с катионом флотируемого минерала);

- дисперсионное взаимодействие углеводородных цепей;

- действие модификаторов (депрессоров и активаторов).

Данный путь практически себя исчерпал, т.к. число описанных и изученных группировок не превышает десяти.

Целью изобретения является повышение эффективности при подборе композитов реагентов.

Технический результат, получаемый при реализации разработанного способа, состоит в обеспечении подбора композитов реагент для максимального извлечения ценных компонентов на основе компьютерной технологии и химических программ.

Предлагается составлять композиции на основе современных представлений и квантово-химических расчетов при использовании химических программ.

Использовали для компьютерного моделирование реагентов программу Chem Bio 3D специализированного комплекса Chem Office корпорации Cambridge Soft. Компьютерные данные получали после минимизации ММ2. Основой для вычисления потенциальной энергии молекулы или совокупности молекул как ансамбля атомов является аддитивная схема, в рамках которой общая потенциальная энергия системы представляется в виде суммы парных взаимодействий отдельных атомов или атомных групп.

В программе Chem Bio 3D используется расширенная и модифицированная версия поля ММ2. Энергия растяжения валентных связей в силовом поле ММ2 вычисляется в гармоническом приближении. Значения данных параметров были рассчитаны Элинджером для различных пар атомов, таких как С-С, С-Н, С-O и других, на основании обработки экспериментальных данных по колебательным спектрам. Значения деформации валентных углов рассчитаны для различных групп атомов, таких как С-С-С, С-О-С, С-С-Н. Для каждой тройки атомов равновесное значение угла зависит от того, с какими другими связан центральный атом. Поправка изгиб-растяжение учитывает изменение длины связи при изменении валентного угла.

В качестве функции силового поля для энергии ван-дер-ваальсовых взаимодействий в программе Chem Bio 3D используется потенциал «6-ехр», включающий степенной и экспоненциальный члены. Степенная функция описывает притяжение атомов на больших расстояниях, а экспоненциальная - отталкивание на близких расстояниях. При расчете энергии ван-дер-ваальсовых взаимодействий программа производит раздельное вычисление сумм по двум группам атомов: группе атомов, разделенных друг от друга тремя валентными связями, и группе атомов, разделенных более чем тремя валентными связями или вообще принадлежащих разным молекулам. Первая группа называется ¼ ван-дер-ваальсовым взаимодействием, вторая, соответственно, не ¼ ван-дер-ваальсовыми взаимодействиями.

Дипольный момент (Д.М.) молекулы характеризует электрические свойства молекулы как системы заряженных частиц. У полярных молекул постоянный (собственный) Д.М. равен произведению расстояния между « центрами тяжести» положительных и отрицательных зарядов на их величину и направлен (условно) от отрицательного заряда к положительному.

Каждая химическая связь в молекуле имеет в большей или меньшей степени полярный характер, который зависит от различных эффективных зарядов атомов связи, и, следовательно, химической связи может быть приписан определенный Д.М. Изучение Д.М. химической связи позволяет судить о возможных конфигурациях и комформациях молекул.

Было проведено сравнение способа флотации руд со способом, выбранным в качестве прототипа.

Разработанный способ позволяет заранее подбирать композиты реагентов для максимального извлечение металлов. Для этого определяют основные компьютерные параметры общей стерической энергии ряда флотационных реагентов, распределения электронной плотности (заряда) на отдельных атомах, ван-дер-ваальсово и дипольное взаимодействия, построены молекулярные орбитали и вычислена энергия их уровня.

Ниже приведены расчеты необходимой композиции для максимального извлечения металлов платиновой группы (МПГ) из руд. В таблице 1 представлены флотореагенты, которые используются при флотации данных руд, и их компьютерные параметры.

Таблица 1 Используемые флотореагенты при флотации руд МПГ и их компьютерные параметры Параметры Реагенты Диизобутил ДТФИНа Итерация 255 Бутил К×Н Итерация 29 Дибутил ДТ ФН Итерация 371 ДМДТС Итерация 34 Растяжение валентных связей 0.6893 0.4636 0.7430 0.2580 Изгиб валентных углов 2.8914 2.4632 2.4600 3.1866 Поправки изгиб-растяжение 0.2397 0.1929 0.2760 0.1398 Внутреннее вращение 2.6206 0.0073 -0.1800 1.3200 Не ¼ ван-дер-ваальсово взаимодействие -3.0632 -0.3746 -3.1752 1.7483 ¼ ван-дер-ваальсово взаимодействие 4.3302 5.1176 8.8701 2.2390 Диполь/дипольное взаимодействие 0.4956 0.4152 -0.3299 -2.7717 Общая стерическая энергия, ккал/мол : 8.2853 8.6639 6.1198 8.2036 Δ - Молекулярный вес 210,34 150,26 242,34 121,22 Отношение г/т: М 50/210,34=0,238 120/150,26=0,799 70/242,34=0,289 100/121,22=0,825

Примечание: диизобутилдитиофосфиновая кислота (Диизобутил ДТФИНа), бутиловая ксантогеновая кислота (Бутил К×Н), дибутилдитиофосфорная кислота(Дибутил ДТФН), диметилдитиокарбаминовая кислота (ДМДТС).

Применяемые реагенты характеризуются: практически одинаковой

энергией, растяжением валентных связей, изгибом валентных углов. Для Диизобутил ДТФИНа, Бутил К×Н практически одинаковы диполь/дипольные взаимодействия.

Отличаются параметры:

- для Диизобутил ДТФИНа внутреннее вращение 2.6206;

- для Бутил К×Н не ¼ ван-дер-ваальсово взаимодействия -0.3746;

- для ДибутилДТФН ¼ ван-дер-ваальсово взаимодействия 8.8701, диполь/дипольное взаимодействие-0.3299, а также зарядом на фосфоре и протонах.

Пример 1. Для флотации MПГ из кека выщелачивания пирротина принимали реагенты: бутиловый ксантогенат калия (Бутил К×К) в сочетании с дибутиловым дитиофосфатом (ДибутилДТФН) и реагентом AeroPhine 3418А-(50% раствор диизобутилдитиофосфина натрия Диизобутил ДТФИНа производства Cytec Industries Inc.).

Расход флотационных реагентов был следующим: 120 г/т Бутил К×К, 70 г/т ДибутилДТФН и 100 г/т Диизобутил ДТФИНа (50 г/т фосфината натрия), т.е. отношение 120:70:50. или по отношению к Диизобутил ДТФИНа 1:1,4 ДибутилДТФН:2,4 Бутил К×К.

Определяют коэффициенты путем умножения компьютерных параметров на расход реагентов, выраженных в моль. Принимают параметры:

- не ¼ ван-дер-ваальсово взаимодействия,

- ¼ ван-дер-ваальсово взаимодействия;

-диполь/дипольное взаимодействие.

Для Диизобутил ДТФИНа: 0,238х×-3.0632+0,238×4.3302+0,238×0.4956=0,419

:-0,73+1,031+0,118=0,419

Для Бутил К×К:0,799×-0.3746+0,799×5.1176+0,799×0.4152=4,121

:-0,3+4,089+0,332=4,121

Для Дибутил ДТФН: 0,289×-3.1752+0,289×8.8701+0,289×-0.3299=1,55

:-0,918+2,563 -0,095=1,55

∑=0,419+4,121+1,55=6,09

При извлечении МПГ порядка 81,0% предлагаемый коэффициент равен 6.09

Коэффициенты для растяжения валентных связей:

Для Диизобутил ДТФИНа 0.6893×0,238=0.164 Бутил К×Н 0.4636×0,799=0,37 Дибутил ДТФН 0.7430×0,289=0,215

Коэффициенты для изгиба валентных углов:

Диизобутил ДТФИНа 2.8914×0,238=0,688 Бутил К×Н 2.4632×0,799=1,968 Дибутил ДТФН 2.4600×0,289=0,711

∑=0,749+3,367=4,116

Пример 2. Для медно-никелеевой MПГ-содержащей руды применяли реагенты: диизобутил ДТФИНа м.в. 210,34 расход 10,20,30 г/т; Диметилдитиокарбамат натрия(ДМДТС) м.в. 121.22 расход 100 г/т; Бутил К×Н м.в. 150,26 расход 10 г/т [5].

При данном расходе количество молей реагентов:

Диизобутил ДТФИНа: 10/210,34=0,048; 20/210,34=0,0952; 30/210,34=0,143 Бутил К×Н 10 г/т: 10/150,26=0,067

Диметилдитиокарбамат натрия (ДМДТС) 100/121,22=0,825

Коэффициент с учетом компьютерных параметров составит:

для Диизобутил ДТФИНа: 0,048×-3.0632+0,048×4.3302+0,048×0.4956=0,085

:-0,147+0,208+0,024=0,085

для Диизобутил ДТФИНа: 0,0952×-3.0632+0,0952×4.3302+0,0952×0.4956=0,167

:-0,292+0,412+0,047=0,167

для Диизобутил ДТФИНа: 0,143×-3.0632+0,143×4.3302+0,143×0.4956=0,252

:-0,438+0,619+0,071=0,252

для Бутил К×Н: 0,0666×-0.3746+0,0666×5.1176+0,0666×0.4152=0,3507

:-0,0250+0,3408+0,0277=0,3507

для ДМДТС: 0,825×2.2390+0,825×1.7483+0,825×-2.7717=1,002

: 1,847+1,442-2,287=1,002

Экспериментально было установлено, что при Диизобутил ДТФИНа 10 г/т - извлечение Рt-71,28; Рd-85,85; при Диизобутил ДТФИНа 20 г/т-извлечение Pt-81,85; Pd-90,18; при Диизобутил ДТФИНа 30 г/т-извлечение Pt-81,44; Pd-92,41.

Коэффициент определен для:

1) 0,085+0,3507+1,002=0,085+1,3527=1,4377; при 10 г/т-извлечение Pt-71,28; Pd-85,85;

2) 0,167+0,3507+1,002=1,5197; при 20 г/т-извлечение Pt-81,85; Pd-90,18;

3) 0,252+0,3507+1,002=1,6047; при 30 г/т-извлечение Pt-81,44; Pd-92,41.

Для максимального извлечения МПГ коэффициент в пределах 1,5197-1,6047.

Общая энергия флотореагентов:

При расходе 10 г/т: 8.2036×0,085=0,697+8.2853×0,0666(0,552)+6.1198×0,825(5,049)=6,298

При расходе 20 г/т: 8.2036×0,0952=0,781+0,552+5,049=6,382

При расходе 30 г/т: 8,2036×0,143=1,173+0,552+5,049=6,774

Способ осуществляется следующим образом. Для используемых реагентов при флотации строят молекулярную модель. Затем производят минимизацию энергии посредством опции ММ2 и определяют компьютерные параметры. С учетом требуемого расхода реагента и компьютерных параметров определяют величину коэффициента для флотации руд, содержащих МПГ.

Данный способ позволяет создать композит флотореагентов для максимального извлечения МПГ из медно-никелевых руд и кека выщелачивания пирротина.

Похожие патенты RU2524701C1

название год авторы номер документа
СПОСОБ ФЛОТАЦИИ РУД 2012
  • Соложенкин Петр Михайлович
  • Трофимов Виталий Александрович
RU2564723C2
СПОСОБ ПЕРЕРАБОТКИ ТРУДНОФЛОТИРУЕМЫХ НИКЕЛЬ-ПИРРОТИНОВЫХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ БЛАГОРОДНЫЕ МЕТАЛЛЫ 2003
  • Баскаев П.М.
  • Захаров Б.А.
  • Алексеева Л.И.
  • Кайтмазов Н.Г.
  • Нафталь М.Н.
  • Исмагилов Р.И.
  • Ширшов Ю.А.
  • Яценко А.А.
  • Бойко И.В.
  • Погосянц Г.Р.
  • Салайкин Ю.А.
  • Пыхтин Б.С.
  • Галанцева Т.В.
  • Колпаков Н.А.
  • Пристанский К.А.
  • Благодатин Ю.А.
  • Демиденко И.С.
  • Плодухина Н.В.
  • Богданов С.В.
RU2249487C1
СПОСОБ ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ ПИРРОТИНСОДЕРЖАЩИХ РУД 2005
  • Храмцова Ирина Николаевна
  • Баскаев Петр Мурзабекович
  • Волянский Игорь Владимирович
  • Кайтмазов Николай Георгиевич
  • Исмагилов Ринат Иршатович
  • Цымбал Александр Степанович
  • Котенев Дмитрий Викторович
  • Косенко Виталий Анатольевич
  • Гоготина Валентина Васильевна
  • Нафталь Михаил Нафтольевич
  • Лесникова Людмила Сергеевна
  • Амирова Екатерина Валентиновна
  • Верета Светлана Николаевна
  • Бойко Игорь Викторович
RU2291747C1
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ ФЛОТАЦИИ СУЛЬФИДНЫХ РУД 1999
  • Попов Б.Н.
  • Кашбиев Г.Г.
  • Эссерт В.К.
  • Роговский Г.М.
  • Протасова Н.Н.
  • Шаветов В.А.
  • Змитрович В.С.
  • Наумова Е.А.
  • Арменкова Г.Ю.
  • Кайтмазов Н.Г.
  • Иванов В.А.
  • Баскаев П.М.
  • Яценко А.А.
  • Малиновская И.Н.
  • Волянский И.В.
  • Погосянц Г.Р.
  • Шварева Н.П.
RU2142856C1
СПОСОБ ПЕРЕРАБОТКИ УПОРНЫХ ПИРРОТИН-АРСЕНОПИРИТ-ПИРИТ-БЕРТЬЕРИТ-СТИБНИТОВЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД (ВАРИАНТЫ) 2023
  • Чернов Дмитрий Владимирович
  • Кухаренко Владимир Владимирович
  • Тумаков Валерий Михайлович
  • Елизаров Роман Григорьевич
  • Булгаков Сергей Викторович
  • Белый Александр Васильевич
  • Солопова Наталья Владимировна
  • Телеутов Анатолий Николаевич
  • Малашонок Александр Петрович
  • Максименко Владимир Владимирович
RU2807008C1
СПОСОБ СЕЛЕКТИВНОЙ ФЛОТАЦИИ ПЕНТЛАНДИТА В ЩЕЛОЧНОЙ СРЕДЕ ИЗ МАТЕРИАЛОВ, СОДЕРЖАЩИХ ПИРРОТИНСУЛЬФИДЫ 1997
  • Острожная Е.Е.
  • Малиновская И.Н.
  • Асанова И.И.
  • Абрамов Н.П.
  • Говоров А.В.
  • Нафталь М.Н.
  • Марков Ю.Ф.
  • Манцевич М.И.
  • Мальцев Н.А.
  • Базоев Х.А.
  • Баскаев П.М.
  • Гарибов Х.А.
  • Тинаев Т.Р.
  • Розенберг Ж.И.
  • Николаев Ю.М.
  • Линдт В.А.
  • Меджибовский А.С.
  • Панфилова Л.В.
  • Митюков В.В.
  • Исмагилов Р.И.
  • Кайтмазов Н.Г.
  • Иванов В.А.
RU2108167C1
СПОСОБ ПОДГОТОВКИ МИНЕРАЛОВ ДЛЯ ИССЛЕДОВАНИЯ ДЕЙСТВИЯ ФЛОТАЦИОННЫХ РЕАГЕНТОВ ДЛЯ ОБОГАЩЕНИЯ ПЛАТИНОСОДЕРЖАЩИХ РУД И ПРОДУКТОВ ИХ ОБОГАЩЕНИЯ 2013
  • Иванова Татьяна Анатольевна
  • Копорулина Елизавета Владимировна
  • Чантурия Валентин Алексеевич
  • Недосекина Татьяна Васильевна
  • Гетман Виктория Валерьевна
  • Матвеева Тамара Николаевна
RU2538559C1
СПОСОБ ФЛОТАЦИИ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 1996
  • Блатов И.А.
  • Максимов В.И.
  • Касиков А.Г.
  • Велим В.С.
  • Зеленский Б.А.
  • Бондаренко В.П.
RU2116840C1
СПОСОБ ПЕННОЙ ФЛОТАЦИИ (ВАРИАНТЫ) 2012
  • Нагарадж Девараясамудрам Р.
  • Риччо Питер
  • Бхамбхани Тарун
  • Ротенберг Алан С.
  • Кинтанар Кармина
  • Ван Бин
RU2626081C2
СПОСОБ ФЛОТАЦИИ СУЛЬФИДНЫХ МИНЕРАЛОВ МЕДИ ИЗ ХАЛЬКОПИРИТ-КУБАНИТОВЫХ ПИРРОТИНСОДЕРЖАЩИХ МЕДНО-НИКЕЛЕВЫХ РУД 2003
  • Храмцова И.Н.
  • Баскаев П.М.
  • Кайтмазов Н.Г.
  • Захаров Б.А.
  • Волянский И.В.
  • Тинаев Т.Р.
  • Цымбал А.С.
  • Котенев Д.В.
  • Нафталь М.Н.
  • Пазина М.А.
  • Гоготина В.В.
  • Панфилова Л.В.
RU2252822C1

Реферат патента 2014 года СПОСОБ ФЛОТАЦИИ РУД

Изобретение относится к области обогащения полезных ископаемых, в частности к выбору флотационных реагентов для флотации руд. Способ флотационного извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина с использованием смеси флотореагентов - собирателей. В качестве флотореагентов используют смеси органических соединений с определенными экспериментальными компьютерными параметрами, величина диполь/дипольного взаимодействия которых должны быть пределах от -2,7717 до 0,4956, ¼ ван-дер-ваальсово взаимодействие в пределах от 2,2390 до 8,8701, не ¼ ван-дер-ваальсово взаимодействие от -0,3746 до 1,7483, изгиб валентных углов от 2,4600 до 3,1866, растяжением валентных связей от 0,2580 до 0,7430 и величиной стерической энергии от 6,1198 до 8,6639 ккал/моль. Технический результат - повышение эффективности флотационного извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина, а также повышение эффективности подбора реагентов. 3 з.п. ф-лы, 1 табл., 2 пр.

Формула изобретения RU 2 524 701 C1

1. Способ флотации руд путем извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина с использованием смеси собирателей, отличающийся тем, что в качестве флотореагентов используют смеси органических соединений с определенными экспериментальными компьютерными параметрами, величина диполь/дипольного взаимодействия которых должны быть пределах от -2,7717 до 0,4956, ¼ ван-дер-ваальсово взаимодействие в пределах от 2,2390 до 8,8701, не ¼ ван-дер-ваальсово взаимодействие от -0,3746 до 1,7483, изгиб валентных углов от 2,4600 до 3,1866, растяжением валентных связей от 0,2580 до 0,7430 и величиной стерической энергии от 6,1198 до 8,6639 ккал/моль.

2. Способ по п.1, отличающийся тем, что соотношение флотореагентов смеси определяется величиной суммы коэффициентов 6,09, установленных с учетом компьютерных параметров и расхода реагентов при флотации металлов платиновой группы из кеков выщелачивания пирротина, при этом для диизобутилдитиофосфиновой кислоты коэффициент равен 0,419, для дибутилдитиофосфорной кислоты коэффициент равен 1,55 и для бутиловой ксантогеновой кислоты коэффициент равен 4,121.

3. Способ по п.1, отличающийся тем, что соотношение флотореагентов смеси для максимального извлечения металлов платиновой группы из медно-никелевых руд определяется суммой коэффициентов в пределах 1,5197-1,6047.

4. Способ по п.1, отличающийся тем, что для флотореагентов смеси растяжение валентных связей от 0,4636 до 0,7430; изгиб валентных углов от 2,4600 до 2,8914, и коэффициент для растяжения валентных связей равен 0,749, а коэффициент изгиба валентных углов равен 3,367, а общая стерическая энергия композита изменяется в пределах от 6,298 до 6,774 ккал/моль.

Документы, цитированные в отчете о поиске Патент 2014 года RU2524701C1

ГУСАКОВ М.С
"Разработка способа выщелачивания сульфидных концентратов сернокислыми растворами трехвалентного железа, полученными иммобилизированной биомассой" (на примере никельсодержащего пирротинового концентрата Талнахской ОФ) Афтреферат, Москва, 2012, размещен на сайте НИТУ МИСИС 11.04.2012, [найдено 04.02.2014]
Найдено из Интернет: , 22с.,

RU 2 524 701 C1

Авторы

Соложенкин Петр Михайлович

Трофимов Виталий Александрович

Даты

2014-08-10Публикация

2012-12-27Подача