СПОСОБ НЕПРЕРЫВНОГО УДАЛЕНИЯ СЕРНИСТОГО ВОДОРОДА ИЗ ПОТОКА ГАЗА Российский патент 2014 года по МПК B01D53/14 B01D53/52 B01D53/78 B01D53/86 B01D53/96 C01B17/00 

Описание патента на изобретение RU2527991C1

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ

По данной заявке испрашивается приоритет по заявке США на патент, серийный номер 12/913,448, поданной 27 октября 2010 г., которая включена в данную заявку полностью посредством отсылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ДАННОЕ ИЗОБРЕТЕНИЕ

Данное изобретение относится к усовершенствованному способу окисления-восстановления (Redox) для обработки газа, не подвергшегося сероочистке, содержащего сернистый водород. В частности, при осуществлении этого способа применяют окислительный аппарат высокого давления в сочетании с абсорбером высокого давления.

СВЕДЕНИЯ О ПРЕДШЕСТВУЮЩЕМ УРОВНЕ ТЕХНИКИ

Сернистый водород является основным источником загрязнения газовых потоков, так как он выделяется в виде побочного продукта при осуществлении ряда химических процессов, таких как производство сульфатной целлюлозы или крафт-бумаги, получение вискозы, обработка сточных вод, получение органических соединений, содержащих серу, а также он выделяется во время очистки нефти и при получении природного газа и горючих газов из угля, например, в процессе коксования. Сернистый водород содержится также в геотермальном паре, который затем используют в установках для выработки энергии.

Для устранения этих загрязняющих серосодержащих газов было создано несколько восстановительно-окислительных (редокс) способов, в которых для удаления сернистого водорода из газового потока применяется водный раствор хелатированного металлического катализатора.

При осуществлении этих известных способов газ, содержащий сернистый водород, известный как "сернистый нефтяной газ", контактирует с хелатированным металлическим катализатором для осуществления абсорбции. Происходят также последующее окисление сернистого водорода до элементарной серы и сопутствующее восстановление металла до более низкой стадии окисления. Раствор катализатора затем регенерируется для повторного применения путем его контактирования с кислородсодержащим газом для окисления металла снова до более высокой стадии окисления. Элементарная сера непрерывно удаляется в виде твердого продукта с высокой степенью чистоты. Примером таких способов окисления-восстановления, не ограничивающим их, служит способ, описанный в патенте США №4622212 и в ссылках, которые цитируются в данной заявке.

Для того чтобы вернуть "отработанный" жидкий редокс-катализатор в его первоначальную степень окисления, он может быть возвращен в цикл для последующего использования в способе, в раствор отработанного редокс-катализатора может быть введен кислород. Это обычно осуществляется с применением способа окисления, когда различные механические устройства, включая хорошо известные барботажные устройства, используют сжатый воздух в качестве источника кислорода. Обычно такие способы окисления проводят при величине давления, которая ниже давления на восстановительной стадии процесса, то есть в абсорбере, наиболее обычно это давление равно примерно атмосферному давлению. Применение окислительного аппарата является результатом попытки свести к минимуму капитальные расходы за счет устранения необходимости в более дорогом оборудовании, работающем при высоком давлении. Хотя первоначальные капитальные расходы на оборудование могут быть ниже, работа при большой разнице между давлением в абсорбере и в окислителе порождает другие проблемы. Например, при осуществлении этих известных процессов редокс-раствор, находящийся при высоком давлении и выходящий из абсорбера, должен находиться затем при более низком давлении перед вводом в окислительное устройство. Это обычно осуществляют при помощи сепаратора низкого давления или ряда сепараторов низкого давления. Снижение давления редокс-раствора приводит к неприятным последствиям, таким как вспенивание, потеря газа и быстрая эрозия регулирующих клапанов, вызванная наличием суспендированных твердых частиц серы. Все эти проблемы снижают экономическую эффективность способа и его эксплуатационные качества.

До настоящего времени не удалось создать способ восстановления-окисления при высоком давлении, который позволяет решить указанные выше проблемы, но при этом является экономичным способом удаления серы из потоков углеводородов. Эти и другие преимущества способа по изобретению станут очевидными из следующего более подробного описания данного изобретения.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к усовершенствованному способу восстановления-окисления для обработки газовых потоков, содержащих сернистый водород. Согласно этому усовершенствованному способу секция окисления работает при более высоком давлении, чем секция восстановления, а именно абсорбер. Этот более высокий градиент давления устраняет необходимость наличия оборудования для снижения давления, такого как испарительный сосуд. Конструкция окислительного аппарата не является критической для способа по нашему изобретению, конструкция абсорбера также не является критической при условии, что оба узла могут работать при внутреннем давлении, превышающем 100 ф/дюйм2, и при температуре, равной примерно 125°F. Хотя согласно настоящему изобретению может быть использован любой кислородсодержащий газ, ниже для краткости будет указан наиболее распространенный и наиболее доступный газ - воздух.

Сжатый газ, который вводится в окислительный аппарат, поддерживает рабочее давление, превышающее рабочее давление в абсорбере, который функционирует при давлении более 100 ф/дюйм2. Предпочтительно, когда это более высокое давление в окислительном аппарате превышает рабочее давление в абсорбере примерно на 5-10 ф/дюйм2 для того, чтобы снизить расходы на компрессию. Высокое давление в окислительном аппарате предпочтительно поддерживать, используя воздух высокого давления в качестве окисляющего газа для регенерации раствора металлического катализатора, как будет описано ниже. Работа окислительного аппарата при давлении, превышающем атмосферное, приводит к более высокому парциальному давлению кислорода в окислительном аппарате, и так как количество кислорода, требующееся для переокисления катализатора, обратно пропорционально парциальному давлению кислорода, требуется меньше воздуха, так как давление в окислительном аппарате увеличивается.

Сочетание абсорбера и окислительного аппарата высокого давления согласно изобретению предпочтительно использовать для осуществления способов обработки потоков газообразных углеводородов для конверсии H2S в элементарную серу при помощи водного редокс-раствора, содержащего хелатированное железо в качестве катализатора.

Поток газа, содержащего H2S (сернистого нефтяного газа), контактирует с водным редокс-раствором, который абсорбирует H2S, превращающийся в элементарную серу и в котором часть железа восстанавливается из трехвалентного железа (Fe+++) в двухвалентное железо (Fe++).

Весь редокс-раствор или его часть, содержащие двухвалентное железо, затем вводятся в окислительный аппарат, где сжатый воздух подается в редокс-раствор, в котором он предпочтительно контактирует с редокс-раствором в виде крошечных пузырьков с очень большой поверхностью. Это вызывает регенерацию (окисление) двухвалентного железа с получением трехвалентного железа (стадия регенерации). Раствор регенерированного хелатированного железа (катализатора) затем возвращается (в цикл) в процесс для повторного использования в качестве катализатора окисления H2S. Сера удаляется из системы путем пропускания части раствора или всего раствора из окислительного аппарата через устройство для выделения серы, где сера удаляется. Поскольку окислительное устройство согласно моему изобретению работает при давлении более 100 ф/дюйм2, устройство для выделения серы должно быть способно к выделению твердой элементарной серы при давлении выше атмосферного и к снижению давления до атмосферного при выводе серы из устройства. Такое устройство для выделения серы в уровне техники называется "шлюзовым бункером".

Хотя для изготовления катализатора на основе хелатированного металла согласно данному изобретению можно применять ряд поливалентных металлов, предпочтительным поливалентным металлом является железо. Ряд реакций, которые участвуют при осуществлении способа по изобретению при каталитическом окислении сернистого водорода до элементарной серы, может быть описан следующими уравнениями, где L обозначает конкретный лиганд, выбранный для получения катализатора на основе хелатированного металла:

( 1 )    H 2 S ( г а з ) + H 2 O ( ж и д к . ) H 2 S ( в о д н . ) + H 2 O ( ж и д к . )

( 2 )    H 2 S ( водн . ) H + + H S

( 3 )     H S + 2 ( F e 3 + L 2 ) S ( т в е р д . ) + 2 ( F e 2 + L 2 ) + H +

При объединении уравнений (1)-(3) получается следующее уравнение:

( 4 )     H 2 S ( г а з ) + 2 ( F e 3 + L 2 ) 2 H + + 2 ( F e 2 + L 2 ) + S ( т в е р д . )

Для того чтобы способ удаления сернистого водорода из потока газов, когда хелат трехвалентного железа применяется для осуществления каталитического окисления сернистого водорода, был экономичным, является существенным, чтобы хелат двухвалентного железа, образовавшийся описанным выше образом, непрерывно регенерировался за счет окисления хелата трехвалентного железа при контактировании реакционного раствора с растворенным кислородом, предпочтительно полученным при введении воздуха окружающей среды при высоком давлении в ту же или отдельную зону контакта.

Ряд реакций, которые имеют место в окислительном аппарате согласно нашему изобретению, может быть представлен следующими уравнениями:

( 5 )     O 2 ( г а з ) + 2 H 2 O O 2 ( в о д н . ) + 2 H 2 O

( 6 )     O 2 ( в о д н . ) + 2 H 2 O + 4 ( F e 2 + L 2 ) 4 ( O H ) + 4 ( F e 3 + L 2 )

При объединении уравнений (5)-(6) получают уравнение (7):

( 7 )    1/2O 2 + H 2 O + 2 ( F e 2 + L 2 ) 2 ( O H ) + 2 ( F e 3 + L 2 )

При объединении уравнений (4) и (7) получают следующее уравнение, описывающее весь процесс:

( 8 )     H 2 S ( г а з ) + 1 / 2 O 2 ( г а з ) S ( т в е р д . ) + H 2 O ( ж и д к . )

Было установлено, что не все агенты хелатирования железа, способные образовывать комплекс с железом в трехвалентном состоянии (Fe3+) или в двухвалентном состоянии (Fe2+) в водных растворах, пригодны для применения в широком интервале рабочих условий процесса, используемых для указанной восстановительно-окислительной системы при удалении сернистого водорода. Среди агентов, хелатирующих железо, которые применяли при осуществлении известных способов удаления сернистого водорода, находятся хелатирующие агенты типа аминополикарбоновых кислот, такие как этилендиаминтетрауксусная кислота и ее щелочные соли.

Как уже указывалось, одной целью данного изобретения является устранение проблем, связанных с обычным восстановительно-окислительным процессом, таких как вспенивание и потеря газообразного продукта в сепараторе (-ах) низкого давления, где абсорбер работает при высоком давлении и окислительный аппарат работает при давлении около атмосферного. При осуществлении изобретения, описанного в данной заявке, любой газ, который растворен в растворе, выходя из абсорбера высокого давления, будет оставаться в растворе до тех пор, пока он не поступит снова в абсорбер высокого давления, где небольшое количество газа мгновенно испаряется из раствора и поступает в поток газообразного продукта.

Указанная выше цель достигается за счет наличия окислительного аппарата, который работает при более высоком давлении, чем абсорбер, предпочтительно, при давлении, которое на примерно 5-10 ф/дюйм2 выше, чем давление в абсорбере. Предпочтительно, если абсорбер работает при давлении выше 100 ф/дюйм2.

Другой вариант нашего изобретения включает обеспечение системы для окисления раствора окислительно-восстановительного катализатора, включающей источник сжатого воздуха; окислительный аппарат, способный поддерживать рабочее давление Р2, где Р2≥Р1+5 ф/дюйм2 и Р1 обозначает давление в абсорбере, которое превышает 100 ф/дюйм2. Сжатый воздух подается в окислительный аппарат для регенерации раствора металлического катализатора и для поддержания разницы между давлением в абсорбере и окислительном аппарате.

Еще один вариант данного изобретения относится к способу непрерывного удаления сернистого водорода из газа, когда исходный газ направляют на окислительно-восстановительную стадию, где он контактирует с хелатом металла в качестве катализатора в абсорбере, работающем при давлении более 100 ф/дюйм2, с получением первого потока газообразного продукта, не содержащего сернистого водорода, и второго потока, содержащего элементарную серу и раствор хелатированного металла в качестве катализатора; удаляют первый поток; обеспечивают окислительный аппарат высокого давления, работающий при давлении, которое превышает давление в абсорбере; направляют по меньшей мере часть второго потока в окислительный аппарат вместе с потоком сжатого воздуха для контактирования с ним второго потока; и выделяют элементарную серу из раствора хелатированного металла (катализатора).

Эти и другие цели изобретения станут более очевидными из подробного описания предпочтительного варианта, которое приведено ниже.

КРАТКОЕ ОПИСАНИЕ ФИГУР

На Фигуре 1 приведена схема одного из возможных вариантов восстановительно-окислительного способа согласно моему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ

Как уже было указано, наше изобретение касается нового окислительного аппарата высокого давления, который может быть использован для регенерации жидкого восстановительно-окислительного раствора. Этот окислительный аппарат может быть применен для создания новой технологической схемы десульфуризации сернистого газа. Рабочие температуры в окислительном аппарате могут находиться в интервале от примерно 25°C до примерно 55°C. Рабочее давление предпочтительно превышает 100 ф/дюйм2 и, более предпочтительно, более чем на 5 ф/дюйм2 выше, чем рабочее давление в абсорбере, с которым окислительный аппарат сообщается через жидкость.

Теперь рассмотрим Фигуру 1, которая схематически иллюстрирует такой способ десульфуризации 10 для обработки газовых потоков, загрязненных H2S. Как показано на этой Фигуре, поток отработанного газа (сернистого газа) подается по линии 1 в абсорбер 2, где он контактирует с водным раствором хелатированного железа в качестве катализатора. Абсорбер 2 работает при давлении, которое превышает 100 ф/дюйм2. Раствор катализатора поступает из окислительного аппарата 3 высокого давления при помощи регулирующего клапана 4. После окончания контактирования исходного газа с жидким восстановительно-окислительным раствором в абсорбере 2 раствор отработанного катализатора удаляется по линии 5 и подается при помощи насоса 6 через клапан регулятора уровня жидкости 7 во входное отверстие окислительного аппарата 3, который работает при давлении на 5-10 ф/дюйм2 превышающем давление в абсорбере 2. Абсорбер 2 может иметь любую конструкцию, позволяющую вместить требуемое количество удаляемого H2S, а именно это могут быть абсорберы, заполненные жидкостью, статические смесители, колонны с паковкой, труба Вентури или абсорберы с подвижным слоем.

Поток газа, практически не содержащий H2S, покидает абсорбер 2 по линии 8. Поток газа, содержащего О2, предпочтительно воздух высокого давления, вводится в окислительный аппарат 3 по линии 9. Жидкий восстановительно-окислительный раствор удаляется из окислительного аппарата 3 по линии 11 и вводится в абсорбер 2. Элементарная сера непрерывно удаляется путем направления части жидкого раствора из окислительного аппарата 3 с потоком 12 в шлюзовый бункер для выделения серы (не показан). Давление в окислительном аппарате 3 поддерживается за счет сочетания нагнетания воздуха высокого давления и регулятора перепада давления 14, контролирующего величину давления в абсорбере, и клапана 15, регулирующего рабочее давление на линии сброса 13.

Данное изобретение было описано выше с акцентированием на применение железа в качестве выбранного поливалентного металла; однако могут быть также использованы другие поливалентные металлы, которые образуют хелаты с лигандами. Такие дополнительные поливалентные металлы включают медь, кобальт, ванадий, марганец, платину, вольфрам, никель, ртуть, олово и свинец. Хелатирующие агенты обычно выбирают из семейства аминополикарбоновых кислот, например это могут быть EDTA (этилендиаминтетрауксусная кислота), HEDTA (дигидроксиэтилэтилендиаминдиуксусная кислота), MGDA (метилглициндиуксусная кислота) и NTA (нитрилтриуксусная кислота) или другие агенты, которые можно применять согласно данному изобретению.

Во все жидкие окислительно-восстановительные системы могут быть добавлены некоторые щелочные соединения для регулировки величины pH раствора. Без добавления щелочного соединения величина pH раствора будет медленно снижаться до тех пор, пока величина абсорбции H2S раствором перестанет соответствовать требованиям, предъявляемым к требующемуся удалению H2S. Это снижение величины pH обусловлено кислой природой H2S. Кроме того, если поток газа, который подвергается обработке, содержит другие кислые вещества, такие как углекислый газ, величина pH будет уменьшаться еще быстрее, чем при наличии H2S. Соответственно, щелочные вещества, такие как NaOH, КОН, аммиак, карбонаты или бикарбонаты щелочных металлов, обычно добавляются в систему для нейтрализации кислых компонентов. Эти вещества обычно добавляют в основную массу раствора, который содержится в окислительном аппарате, однако они могут быть добавлены в любой точке по ходу процесса.

Приведенное выше описание конкретных вариантов настолько полно раскрывает общую природу данного изобретения, что другие лица, используя обычные знания, могут легко модифицировать и/или адаптировать для различных целей эти конкретные варианты, не выходя за рамки данного изобретения, и поэтому такие адаптации и модификации следует рассматривать как эквиваленты описанных вариантов. Следует иметь в виду, что фразеология и терминология в данной заявке служит только для описания, не ограничивая данное изобретение.

Средства, материалы и стадии способа осуществления различных описанных функций могут принимать ряд альтернативных форм, не выходя за рамки изобретения. Так, термины "средство для…" и "средства для…" и выражения, используемые при описании стадий для указания функции, которые могут быть найдены в приведенном выше описании и в формуле изобретения, приведенной ниже, следует рассматривать как определяющие и охватывающие структурные, физические, химические и электрические элементы или структуры, или стадии, которые существуют в настоящее время или будут существовать в будущем и осуществляют указанную функцию, независимо от того, являются ли они или не являются эквивалентами варианта или вариантов данного изобретения, описанных выше в описании, то есть могут быть использованы другие средства и стадии процесса для осуществления той же самой функции; подразумевается также, что такие выражения даны в смысле их широкой интерпретации в объеме следующей ниже формулы изобретения.

Похожие патенты RU2527991C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ОТ СЕРЫ 2013
  • Нагл Гэри Джей.
RU2532558C1
АНАЭРОБНОЕ УДАЛЕНИЕ СОЕДИНЕНИЙ СЕРЫ ИЗ СТОЧНЫХ ВОД 1995
  • Йозефус Сихбертус Адрианус Лангерверф
RU2144510C1
СПОСОБ УДАЛЕНИЯ СЕРОВОДОРОДА 2019
  • Гэвейд, Прешит
  • Гомач, Джеффри Брюс
  • Нельсон, E. Коул
  • Джексон, Дэвид
  • Харди, K. Майкл
RU2804317C2
СПОСОБ ОБРАБОТКИ УГЛЕВОДОРОДОВ 2013
  • Уотсон Джон
RU2612808C2
СПОСОБ ВЫСОКОЭФФЕКТИВНОГО ИЗВЛЕЧЕНИЯ СЕРЫ ИЗ ПОТОКА КИСЛОГО ГАЗА 2005
  • Чен Цзен Каи
  • Хаффмастер Майкл Артур
RU2383385C2
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ ИЗ СЕРНИСТОГО АНГИДРИДА 2006
  • Рамешни Махин
RU2409517C2
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА 2012
  • Исмагилов Зинфер Ришатович
  • Хайрулин Сергей Рифович
  • Керженцев Михаил Анатольевич
  • Мазгаров Ахмет Мазгарович
  • Голованов Антон Александрович
RU2535041C2
Способ обезвреживания сернистых соединений кислых газов после аминовой очистки малосернистого углеводородного газа 2023
  • Мнушкин Игорь Анатольевич
RU2824992C1
КАТАЛИЗАТОР ДЛЯ СЕЛЕКТИВНОГО ОКИСЛЕНИЯ СОЕДИНЕНИЙ СЕРЫ И СПОСОБ СЕЛЕКТИВНОГО ОКИСЛЕНИЯ СОЕДИНЕНИЙ СЕРЫ ДО ЭЛЕМЕНТАРНОЙ СЕРЫ 1990
  • Петер Джон Ван Ден Бринк[Nl]
  • Джон Вильхельм Гес[Nl]
RU2070089C1
СПОСОБ ОКИСЛИТЕЛЬНОГО ГАЛОГЕНИРОВАНИЯ C УГЛЕВОДОРОДОВ ДО ГАЛОГЕНИРОВАННЫХ C УГЛЕВОДОРОДОВ И СВЯЗАННЫЕ С НИМ ИНТЕГРИРОВАННЫЕ СПОСОБЫ 2002
  • Швайцер Альберт Е.
  • Джоунс Марк Е.
  • Хикман Дэниел А.
RU2286329C2

Реферат патента 2014 года СПОСОБ НЕПРЕРЫВНОГО УДАЛЕНИЯ СЕРНИСТОГО ВОДОРОДА ИЗ ПОТОКА ГАЗА

Изобретение относится к восстановительно-окислительному способу обработки газа, содержащего сероводород, с применением окислительного аппарата в сочетании с абсорбером. Способ непрерывного удаления сернистого водорода из потока газа включает контактирование исходного газообразного сырья, содержащего сернистый водород, с катализатором, представляющим собой хелатированный металл, в абсорбере, работающем при давлении Р1, превышающем 100 ф/дюйм2, с получением первого потока газа, не содержащего сернистый водород, и второго потока, содержащего элементарную серу и раствор хелатированного металла, удаление первого потока, обеспечение окислительного аппарата, работающего при давлении Р2, где Р2>Р1+5 ф/дюйм2, направление части второго потока в окислительный аппарат, введение потока сжатого воздуха, содержащего кислород, в окислительный аппарат, таким образом, чтобы осуществлялась диффузия кислорода и его контактирование с указанным вторым потоком, и выделение элементарной серы из раствора катализатора на основе хелатированного металла в окислительном аппарате и удаление серы из окислительно-восстановительного процесса. Изобретение обеспечивает эффективное удаление сероводорода из газовых потоков восстановительно-окислительным способом при высоком давлении. 4 з. п. ф - лы, 1 ил.

Формула изобретения RU 2 527 991 C1

1. Способ непрерывного удаления сернистого водорода из потока газа, включающий сочетание следующих стадий:
(а) введение исходного сырья, содержащего сернистый водород, для проведения восстановительно-окислительного процесса;
(б) контактирование исходного газообразного сырья с катализатором, представляющим собой хелатированный металл, в абсорбере, работающем при давлении Р1, превышающем 100 ф/дюйм2, с получением первого потока газа, не содержащего сернистый водород, и второго потока, содержащего элементарную серу и раствор хелатированного металла;
(в) удаление первого потока;
(г) обеспечение окислительного аппарата, работающего при давлении Р2, где Р2>Р1+5 ф/дюйм2;
(д) направление по меньшей мере части второго потока со стадии б в окислительный аппарат;
(е) введение потока сжатого воздуха, содержащего кислород, в окислительный аппарат таким образом, чтобы осуществлялась диффузия кислорода и его контактирование с указанным вторым потоком; и
(ж) выделение элементарной серы из раствора катализатора на основе хелатированного металла в окислительном аппарате и удаление серы из окислительно-восстановительного процесса.

2. Способ по п.1, в котором газ, содержащий кислород, вводится в окислительный аппарат при давлении Р3, где Р3≥Р2.

3. Способ по п.1, в котором газ, содержащий кислород, который вводится в окислительный аппарат, используется для поддержания разницы величин давления в окислительном аппарате и абсорбере.

4. Способ по п.1, в котором в жидкостной связи между абсорбером и окислительным аппаратом отсутствует сепаратор низкого давления.

5. Способ по п.1, в котором давление Р1 в окислительном аппарате поддерживается за счет сочетания нагнетания воздуха высокого давления и регулятора перепада давления, контролирующего величину давления Р2 в абсорбере, и клапана, регулирующего рабочее давление на линии сброса.

Документы, цитированные в отчете о поиске Патент 2014 года RU2527991C1

US 4622212 A, 11.11.1986
US 4002727 A, 11.01.1977
US 4808385 A, 28.02.1989
СПОСОБ ОЧИСТКИ ПРИРОДНОГО ГАЗА ОТ СЕРОВОДОРОДА 1998
  • Фахриев А.М.
  • Фахриев Р.А.
RU2179475C2

RU 2 527 991 C1

Авторы

Нагл Гэри Джей

Даты

2014-09-10Публикация

2011-09-08Подача