СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ Российский патент 2014 года по МПК B22F3/20 C22C1/03 B82Y40/00 

Описание патента на изобретение RU2528598C1

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для обработки алюминиевых сплавов.

Из существующего уровня техники известен следующий способ изготовления лигатур на основе алюминия (патент №2190682 РФ, опубл. 10.10.2002). При изготовлении лигатур с алюминиевой матрицей, содержащих 40-80% тугоплавких частиц, помещают частицы в форму для пропитки и заливают жидким алюминием. При этом частицы и алюминий нагревают до разных температур. Алюминий нагревают до температуры, превышающей температуру его плавления не больше, чем на 5-10°C, а частицы, находящиеся в форме, нагревают до пороговой температуры, значительно превышающей температуру жидкого алюминия и зависящей от удельной поверхности частиц и поверхностного натяжения алюминия. Превышение температуры нагрева частиц над температурой нагрева алюминия позволяет преодолеть капиллярное противодавление, улучшить смачиваемость всех частиц и, как следствие, предотвращает получение лигатуры, содержащей значительное количество непропитанных частиц, которые всплывают на поверхность и уходят в шлак.

Данный способ предусматривает применение дополнительного энергоемкого оборудования для нагрева тугоплавких частиц карбида кремния (SiC). Невозможно получение лигатур с расчетным содержанием тугоплавких частиц за счет окисления и всплытия в шлак непропитанных частиц.

Известен «Способ получения прутковой лигатуры алюминий-титан-бор» (патент №2110597 РФ, опубл. 10.05.1998). Предлагаемый способ получения прутковой лигатуры алюминий-титан-бор предусматривает загрузку чушкового алюминия, его расплавления и нагревают до температуры 770°C, затем вводят бор из расчета получения в лигатуре содержания бора 1%. После введения и окончания реакции восстановления бора вводят губчатый титан из расчета получения в лигатуре 5%, затем расплав перемешивают для усреднения химического состава, снимают шлак и производят разливку. Из лигатурных слитков прессованием получают пруток диаметром 9-10 мм.

Недостатком известного способа является использование дополнительной операции прессования для получения прутка, неравномерность распределения боридов по сечению прутка. Данная лигатура не оказывает существенного модифицирующего эффекта при введении в литейные силумины.

Наиболее близким к заявленному техническому решению является «Способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов» (патент №2475334 РФ, опубл. 20.02.2013), который включает получение модификатора в виде прутка путем смешивания алюминиевого порошка с размером частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана со средним размером частиц порядка 40 нм, полученного методом плазмохимического синтеза в планетарной мельнице в течение 5 минут при 400 об/мин и прессования полученной композиции в пруток.

Недостатками данного технического решения являются: высокая энергоемкость способа получения порошка нитрида титана; дорогое и сложное оборудование; особые условий хранения порошка в связи с его способностью к окислению на воздухе.

Технический результат заключается в разработке способа получения модификатора с наименьшими затратами с высоким содержанием ультрадисперсного порошка, повышении времени действия (живучести) модификатора и в повышении физико-механических свойств алюминиевых сплавов.

Технический результат достигается тем, что выполняют смешивание порошка носителя и ультрадисперсного модифицирующего порошка в планетарной мельнице и прессования полученной композиции, при этом в качестве ультрадисперсного модифицирующего порошка используется композиция порошков карбида кремния (SiC) - 50÷70%, нитрида кремния (Si3N4) - 20÷30%, гексафторалюмината натрия (Nа3АlF6) - 10÷20%, полученных по азидной технологии самораспространяющегося высокотемпературного синтеза размерами частиц 70-100 нм, при этом карбид кремния имеет β-модификацию, а в качестве носителя ультрадисперсного порошка используется медь с размером частиц менее 180 мкм в соотношении Сu: ультрадисперсный порошок 9:1.

В качестве ультрадисперсного модификатора была выбрана композиция порошков карбида кремния, нитрида кремния и гексафторалюмината натрия со средним размером частиц 70-100 нм, полученные по азидной технологии самораспространяющегося высокотемпературного синтеза (СВС-А3). Данный способ получения порошков позволяет получить карбид кремния β-модификации, который предположительно должен хорошо смачиваться расплавом алюминия.

Состав композиции порошков выбран на основе следующих данных. Карбид кремния согласно правила Данкова-Конобеевского (принцип размерно-структурного соответствия) имеет тип и параметры кристаллической решетки, близкие кристаллической решетки α-А1. Кристаллические решетки карбида кремния β-модификации и алюминия относятся к одному типу (кубическая гранецентрированная), а параметры кристаллической решетки карбида кремния β-модификации (а=4,3596 Å) и алюминия (а=4,0413 Å) достаточно близки. Расхождения в параметрах кристаллической решетки составляют ~7,9%. Входящий в состав Nа3АlF6 является давно известным и общепринятым афинирующее-модифицирующим реагентом для алюминиевых сплавов.

Медь, входящая в состав модификатора (псевдолигатуры), выбрана с учетом ее высокой плотности (8,2 г/см3) по отношению к алюминиевому расплаву (~2,4 г/см3) и служит носителем композиции порошков на основе карбида кремния. Кроме того, медь, входящая в состав модификатора, служит в качестве микролегирующего компонента для алюминиевого сплава.

Пример выполнения способа.

Полученная по азидной технологии самораспространяющегося высокотемпературного синтеза композиция ультрадисперсных порошков карбида кремния, нитрида кремния и гексафторалюмината натрия размером 70-100 нм предварительно смешивали с порошком меди размером менее 180 мкм в соотношении 9:1, загружали в стакан планетарной мельницы и приводили ее в действие на 2 мин при 1500 об/мин. Полученную композицию прессовали в прутки диаметром 10 мм при усилии прессования 4,84 т (40 атм). В результате получали прутки, содержащие 8-12% ультрадисперсной модифицирующей композиции.

Эффективность модификатора оценивали при модифицировании промышленного алюминиевого сплава АК6М2 по ГОСТ 1583-2003 (таблица 1).

На рисунке 1 - Микроструктуру сплава АК6М2: а, б - без модифицирования; в, г - модифицирование лигатурой CuSiC10 из расчета 0,02%(SiC+Si3N4+Na3AlF6) от массы плавки.

Таблица 1 Размеры фазовых составляющих сплава АК6М2 Вид обработки Параметры α-А1 Параметры Siэ Средний размер, мкм Количество, шт/мм2 Средний размер, мкм Количество шт/мм2 Без модифицирования 54,1 367 13,6 1240 Модифицирование псевдолигатурой CuSiC10 (0,02%(SiC+Si3N4+Na3AlF6)) 22,1 1805 3,9 9360

Похожие патенты RU2528598C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПВСЕВДОЛИГАТУРЫ ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Амосов Александр Петрович
  • Самборук Анатолий Романович
  • Луц Альфия Расимовна
  • Тимошкин Иван Юрьевич
  • Ермошкин Андрей Александрович
  • Ермошкин Антон Александрович
  • Никитин Константин Владимирович
  • Криволуцкий Кирилл Сергеевич
RU2533245C1
Способ получения лигатур для алюминиевых сплавов 1988
  • Сабуров Виктор Петрович
  • Шипицын Владимир Сергеевич
  • Мельников Владимир Иванович
  • Браилко Анатолий Анатольевич
  • Митраков Геннадий Николаевич
  • Дозморов Сергей Владимирович
  • Миллер Таллис Никласович
  • Гоцев Игорь Сергеевич
  • Лебедев Александр Маркович
  • Миннеханов Гизар Нигъматьянович
  • Горланов Владимир Алексеевич
SU1650746A1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ ДОЭВТЕКТИЧЕСКИХ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2011
  • Крушенко Генрих Гаврилович
  • Фильков Михаил Николаевич
RU2475334C2
Способ модифицирования сплава алюминий-титан и состав для модифицирования сплава алюминий-титан 1983
  • Крушенко Генрих Гаврилович
  • Балашов Борис Антонович
  • Миллер Талис Никласович
  • Оводенко Максим Борисович
  • Циелен Улдис Альбертович
  • Золотухин Вячеслав Александрович
  • Ямских Ирина Сергеевна
  • Кадышева Галина Ивановна
  • Корнилов Александр Александрович
  • Завода Виктор Михайлович
  • Назаров Анатолий Петрович
  • Боргояков Михаил Павлович
SU1168622A1
Проволока с наполнителем для внепечной обработки металлургических расплавов 2019
  • Дынин Антон Яковлевич
  • Бакин Игорь Валерьевич
  • Новокрещенов Виктор Владимирович
  • Усманов Ринат Гилемович
  • Токарев Артем Андреевич
  • Рысс Олег Григорьевич
RU2723863C1
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2021
  • Дьячкова Лариса Николаевна
  • Андрушевич Андрей Александрович
  • Ильющенко Александр Федорович
RU2757879C1
СПОСОБ ИЗГОТОВЛЕНИЯ МОДИФИКАТОРА ДЛЯ ЛИТЕЙНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ В ВИДЕ ПРУТКА С ЗАПРЕССОВАННЫМ РАССЫПЧАТЫМ МОДИФИКАТОРОМ НА ОСНОВЕ НАНОУГЛЕРОДА 2015
  • Изотов Владимир Анатольевич
  • Серов Роман Андреевич
RU2624272C2
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЯ И АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ (СИЛУМИНОВ) УГЛЕРОДОМ 2013
  • Изотов Владимир Анатольевич
  • Чибирнова Юлия Валентиновна
RU2538850C2
СПОСОБ МОДИФИЦИРОВАНИЯ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ И ОТЛИВКА, ПОЛУЧЕННАЯ С ИСПОЛЬЗОВАНИЕМ ЭТОГО СПОСОБА 2007
  • Белов Николай Александрович
  • Савченко Сергей Вячеславович
  • Хван Александра Вячеславовна
  • Белов Владимир Дмитриевич
  • Плаксин Александр Александрович
  • Новичков Сергей Борисович
  • Строганов Александр Георгиевич
  • Цыденов Андрей Геннадьевич
RU2334804C1
Состав для модифицирования литейных аллюминиевых сплавов 1982
  • Крушенко Генрих Гаврилович
  • Балашов Борис Антонович
  • Жуков Михаил Федорович
  • Фильков Михаил Николаевич
  • Корнилов Александр Александрович
  • Галевский Геннадий Владиславович
  • Крутский Юрий Леонидович
SU1157104A1

Иллюстрации к изобретению RU 2 528 598 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для алюминиевых сплавов. Способ включает смешивание порошка носителя с ультрадисперсным модифицирующим порошком в планетарной мельнице и прессование полученной композиции. В качестве ультрадисперсного модифицирующего порошка используют композицию порошков карбида кремния (SiC) - 50÷70%, нитрида кремния (Si3N4) - 20÷30%, гексафторалюмината натрия (Nа3АlF6) - 10÷20%, полученных по азидной технологии самораспространяющегося высокотемпературного синтеза, с размерами частиц 70-100 нм, при этом карбид кремния имеет β-модификацию, а в качестве носителя ультрадисперсного порошка используют порошок меди с размером частиц менее 180 мкм в соотношении медь:ультрадисперсный порошок=9:1. Изобретение позволяет изготавливать прутки, содержащие 10% ультрадисперсной модифицирующей композиции, при этом использование модификатора при модифицировании алюминиевых сплавов позволяет измельчать дендриты α-А1 в 2,4 раза для повышения механических свойств сплава. 1 табл., 1 ил.

Формула изобретения RU 2 528 598 C1

Способ получения модификатора для алюминиевых сплавов, включающий смешивание порошка носителя и ультрадисперсного модифицирующего порошка в планетарной мельнице и прессование полученной композиции, отличающийся тем, что в качестве ультрадисперсного модифицирующего порошка используется композиция порошков карбида кремния (SiC) - 50÷70%, нитрида кремния (Si3N4) - 20÷30%, гексафторалюмината натрия (Nа3АlF6) - 10÷20%, полученных по азидной технологии самораспространяющегося высокотемпературного синтеза, с размерами частиц 70-100 нм, при этом карбид кремния имеет β-модификацию, а в качестве носителя ультрадисперсного порошка используется порошок меди с размером частиц менее 180 мкм в соотношении медь:ультрадисперсный порошок=9:1.

Документы, цитированные в отчете о поиске Патент 2014 года RU2528598C1

СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ ДОЭВТЕКТИЧЕСКИХ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2011
  • Крушенко Генрих Гаврилович
  • Фильков Михаил Николаевич
RU2475334C2
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВОЙ ЛИГАТУРЫ АЛЮМИНИЙ-ТИТАН-БОР 1996
  • Шпаков В.И.
  • Севрюков В.С.
  • Галиева Л.В.
  • Нощик А.И.
  • Трифоненков Л.П.
  • Иванова Н.В.
  • Разумкин В.С.
  • Никитин В.М.
RU2110597C1
CN 101538666 A, 23.09.2009
Способ получения этилового эфира фенилэтилциануксусной кислоты 1960
  • Дыханов Н.Н.
SU136357A1

RU 2 528 598 C1

Авторы

Амосов Александр Петрович

Титова Юлия Владимировна

Тимошкин Иван Юрьевич

Никитин Владимир Иванович

Никитин Константин Владимирович

Кривопалов Дмитрий Сергеевич

Хусаинова Татьяна Наильевна

Даты

2014-09-20Публикация

2013-06-25Подача