СПОСОБ ИЗГОТОВЛЕНИЯ МОДИФИКАТОРА ДЛЯ ЛИТЕЙНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ В ВИДЕ ПРУТКА С ЗАПРЕССОВАННЫМ РАССЫПЧАТЫМ МОДИФИКАТОРОМ НА ОСНОВЕ НАНОУГЛЕРОДА Российский патент 2017 года по МПК B22F5/12 C22C1/06 C22C21/00 

Описание патента на изобретение RU2624272C2

Изобретение относится к литейному производству к области металлургии, в частности к модифицированию литейных алюминиевых сплавов. Способ позволяет получать пруток с модификатором для модифицирования алюминиевых сплавов и алюминиево-кремниевых сплавов.

Известен «Способ изготовления модификатора для доэвтектических алюминиево-кремниевых сплавов» [Патент CN 101538666 А, C22C 1/00] в графитовый тигель, нагретый в электрической печи сопротивления до 450-550°C, загружается чушковый алюминий. Затем насыпается слой сухого покровного агента, содержащего, вес.%: 50% NaCl и 50% KCl, производится нагрев до 760-800°C, после чего в расплавленный алюминий вводятся поочередно чушка сурьмы, вес составляет 5-15% от веса всего модификатора, чушка иттрия, вес составляет 1-2% от веса всего модификатора, и чушка магния, вес составляет 1-2% от веса всего модификатора. После чего жидкий металл выдерживается при этой температуре 20-30 минут; затем его перемешивают графитовым прутком высокой чистоты, затем в течение 2-5 мин вводят аргон из положения на 8-15 мм от донной части жидкого металла при скорости потока 8-20 мл/сек; очищают металл и заливают его в металлическую форму, где он охлаждается до комнатной температуры.

Недостатки способа

1) Длительный процесс получения модификатора.

2) Высокая температура плавления иттрия (+1528°C).

3) Невозможность точного соблюдения расстояния ввода аргона.

4) Применение флюса 50% NaCl и 50% KCl негативно сказывается на тигель.

Известен способ [Патент №2475334 C22C 1/06, B22F 3/20, C22C 21/04 д.п. 20.02.2013]. Способ заключается в следующем. Модификатор в виде прутка получают путем смешивания алюминиевого порошка с размерами частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана TiN со средним размером частиц порядка 40 нанометров в планетарной мельнице в течение 5 минут при 400 об/мин и прессования полученной композиции в пруток. Способ позволяет получать пруток для модифицирования с повышенным содержанием ультрадисперсного порошка нитрида титана.

Недостатками способа являются технологическая сложность получения модификатора. При использовании планетарной мельницы полученные частицы будут иметь разный диаметр, область применения ограничена только доэвтектическими силуминами.

Технический результат выражается тем, что при модифицировании алюминиевым прутком происходит лучшее усвоение модификатора сплавом, тем самым - повышение механических и эксплуатационных характеристик отливок, изготавливаемых из этих сплавов, за счет уменьшения размеров дендритов алюминия, α-твердого раствора, эвтектики и первичных кристаллов кремния.

Технический результат достигается тем, в способе получения модификатора для алюминиевых сплавов и алюминиево-кремниевых сплавов, включающем расплавку алюминиевого сплава, нагрев до температуры модифицирования, введение алюминиевого прутка с модификатором при температуре модифицирования, перемешивание и выдержку сплава, при этом алюминиевый пруток изготавливают при раскатке алюминиевой пластины до толщины 02-0,3 мм, с последующей рекристаллизацией при температуре 200-300°C, наносят модификатор на алюминиевую ленту с последующей запрессовкой.

Изобретение поясняется рисунками.

Фиг. 1 - Алюминиевые прутки.

Фиг. 2 - Слитый сплав в остаточную чашу.

Фиг. 3 - Расплав необработанный - эталонный образец.

Фиг. 4 - Расплав модифицированный.

Способ осуществляется следующим образом.

1) Алюминиевую полоску пропускают через вальцы до толщины пластины 0,2-0,3 мм, получают алюминиевую ленту.

2) Алюминиевую ленту рекристаллизуют при температуре 200-300°C.

3) На алюминиевую ленту насыпаюет нужное количество модификатора.

4) Запрессовываютм ленту с модификатором.

5) Получают алюминиевый стержень с модификатором внутри.

Отличительной особенностью применения данного способа является то, что при вводе алюминиевого прутка вглубь расплава модификатор не всплывает на поверхность расплава, а находится внутри расплава, под зеркалом расплава, после расплавления алюминиевого прутка модификатор попадает в расплав и взаимодействует с ним.

Экспериментальные работы получения алюминиевого и алюминиево-кремниевых сплавов показали, что при вводе модификатора на основе наноуглерода с использованием алюминиевого прутка наблюдается:

1) Расплав не выталкивает рассыпчатый модификатор на поверхность расплава,

2) Не наблюдаются остатки модификатора после слития расплава в остаточную чашу,

3) При металлографическом анализе наблюдается измельчение α-твердого раствора, эвтектики и измельчение первичных кристаллов кремния в заэвтектическтом силумине.

В качестве примера можно привести структуру заэвтектического алюминиево-кремниевого сплава АК18, полученного при вводе модификатора с помощью алюминиевого прутка (фиг. 1). После ввода прутка в спав наблюдается (фиг. 4) измельчение структурных составляющих (первичных кристаллов кремния, эвтектики и α-твердого раствора). Измельчение составило более чем в 1-1,5 раза, по сравнению с эталонным образцом (фиг. 3). После слития расплава в остаточную чашу не наблюдается модификатор в свободном состоянии (фиг. 2).

Применение способа ввода модификатора в алюминиевом прутке приводит к усвояемости всего объема модификатора в сплаве. В результате наблюдается модифицирующий эффект как на чистых алюминиевых сплавах, так и на всех группах алюминиево-кремниевых сплавов (силуминах).

Похожие патенты RU2624272C2

название год авторы номер документа
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЯ И АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ (СИЛУМИНОВ) УГЛЕРОДОМ 2013
  • Изотов Владимир Анатольевич
  • Чибирнова Юлия Валентиновна
RU2538850C2
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ ДОЭВТЕКТИЧЕСКИХ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2011
  • Крушенко Генрих Гаврилович
  • Фильков Михаил Николаевич
RU2475334C2
ШУНГИТ КАК МОДИФИКАТОР ДЛЯ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2015
  • Изотов Владимир Анатольевич
  • Чибирнова Юлия Валентиновна
  • Серов Роман Андреевич
  • Вишталюк Алексей Александрович
  • Кононенко Виталий Константинович
RU2609109C1
Способ модифицирования алюминиево-кремниевых сплавов 2015
  • Бобрышев Борис Леонидович
  • Моисеев Виктор Сергеевич
  • Ряховский Александр Павлович
  • Петров Игорь Алексеевич
  • Шляпцева Анастасия Дмитриевна
  • Валиахметов Сергей Анатольевич
  • Андреева Марина Юрьевна
  • Попков Денис Владимирович
RU2623966C2
Способ модифицирования алюминиево-кремниевых сплавов 2020
  • Шляпцева Анастасия Дмитриевна
  • Петров Игорь Алексеевич
  • Ряховский Александр Павлович
  • Моисеев Виктор Сергеевич
  • Бобрышев Борис Леонидович
  • Азизов Тахир Наилевич
RU2743945C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Амосов Александр Петрович
  • Титова Юлия Владимировна
  • Тимошкин Иван Юрьевич
  • Никитин Владимир Иванович
  • Никитин Константин Владимирович
  • Кривопалов Дмитрий Сергеевич
  • Хусаинова Татьяна Наильевна
RU2528598C1
Модификатор для алюминиевых сплавов 1982
  • Иванов Валентин Николаевич
  • Курочкина Марина Александровна
  • Пчелин Борис Игнатьевич
  • Хряпин Владимир Емельянович
SU1057161A1
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2006
  • Горбунов Дмитрий Юрьевич
  • Горбунов Юрий Александрович
  • Сырямкина Елена Юрьевна
  • Сидельников Сергей Борисович
  • Довженко Николай Николаевич
  • Соколов Руслан Евгеньевич
  • Лопатина Екатерина Сергеевна
RU2334588C1
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2011
  • Крушенко Генрих Гаврилович
RU2475550C1
СПОСОБ ПОЛУЧЕНИЯ ПВСЕВДОЛИГАТУРЫ ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Амосов Александр Петрович
  • Самборук Анатолий Романович
  • Луц Альфия Расимовна
  • Тимошкин Иван Юрьевич
  • Ермошкин Андрей Александрович
  • Ермошкин Антон Александрович
  • Никитин Константин Владимирович
  • Криволуцкий Кирилл Сергеевич
RU2533245C1

Иллюстрации к изобретению RU 2 624 272 C2

Реферат патента 2017 года СПОСОБ ИЗГОТОВЛЕНИЯ МОДИФИКАТОРА ДЛЯ ЛИТЕЙНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ В ВИДЕ ПРУТКА С ЗАПРЕССОВАННЫМ РАССЫПЧАТЫМ МОДИФИКАТОРОМ НА ОСНОВЕ НАНОУГЛЕРОДА

Изобретение относится к литейному производству в области металлургии, в частности к модифицированию литейных алюминиевых сплавов. Пруток изготавливают путем раскатки алюминиевой пластины до толщины 0,2-0,3 мм, рекристаллизации полученной алюминиевой ленты при температуре 200-300°С, нанесения на нее рассыпчатого модификатора на основе наноуглерода и последующей запрессовки ленты с модификатором в пруток. Изобретение позволяет улучшить усвоение модификатора сплавом и тем самым повысить механические и эксплуатационные характеристики отливок, изготавливаемых из этих сплавов, за счет уменьшения размеров дендритов алюминия, α-твердого раствора, эвтектики и первичных кристаллов кремния. 4 ил.

Формула изобретения RU 2 624 272 C2

Способ изготовления модификатора для литейных алюминиевых сплавов в виде прутка с запрессованным рассыпчатым модификатором на основе наноуглерода, заключающийся в том, что пруток изготавливают путем раскатки алюминиевой пластины до толщины 0,2-0,3 мм, рекристаллизации полученной алюминиевой ленты при температуре 200-300°С, нанесения на нее рассыпчатого модификатора на основе наноуглерода и последующей запрессовки ленты с модификатором в пруток.

Документы, цитированные в отчете о поиске Патент 2017 года RU2624272C2

СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ ДОЭВТЕКТИЧЕСКИХ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2011
  • Крушенко Генрих Гаврилович
  • Фильков Михаил Николаевич
RU2475334C2
Способ изготовления модифицирующего прутка 1986
  • Сабуров Виктор Петрович
  • Миннеханов Гизар Нигъматьянович
  • Митраков Геннадий Николаевич
  • Чернега Дмитрий Федорович
  • Дятлов Андрей Петрович
  • Могилатенко Владимир Геннадьевич
  • Сабуров Андрей Викторович
  • Крушенко Генрих Гаврилович
SU1388450A1
Модификатор для высококремнистых алюминиевых сплавов 1978
  • Спасская Маргарита Михайловна
  • Тимофеев Геннадий Иванович
  • Марков Владимир Васильевич
  • Злотин Симон Зеликович
  • Гузнов Геннадий Павлович
  • Кузнецов Константин Николаевич
SU718493A1
CN 101538666 A, 23.09.2009.

RU 2 624 272 C2

Авторы

Изотов Владимир Анатольевич

Серов Роман Андреевич

Даты

2017-07-03Публикация

2015-11-10Подача