СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА Российский патент 2014 года по МПК B01J23/44 B01J23/745 B01J23/75 B01J23/89 B01J21/04 B01J37/02 B01J37/08 C07C233/80 

Описание патента на изобретение RU2532733C1

Способ получения катализатора для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА относится к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких полимеров, синтезе высокопрочных волокон и т.д.

Известен способ каталитического жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА (ТНБА) (см. Патент №2041200, С07С 233/80. Способ получения 2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) в растворителе - воде на приготовленном нанесенном палладийсодержащем катализаторе: содержит не более 0,55 масс.% палладия, нанесенного из раствора хлоргидрокомплексов палладия, не более 0,55 масс % железа и не более 1,0 масс % никеля. В качестве носителя для катализатора используют порошкообразные угли различных марок, оксид алюминия, цинка и т.д. Процесс ведут при температуре не выше 130°C и давлении водорода не выше 1,5 МПа, используя при этом концентрацию исходного ТНБА в водной суспензии, позволяющую получить после гидрирования в области температур до 130°C раствор ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА), что служит необходимым условием для отделения суспендированного катализатора от катализата гидрирования. Выход ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) составляет 97,0…99,1% от теоретического.

Недостатками известного способа являются сложность технологического процесса, связанная с отделением катализатора от катализата гидрирования, из которого при постепенном охлаждении и перемешивании кристаллизуется и выделяется фильтрацией (горячей вакуумной или под давлением) целевой продукт; в результате перемешивания водной суспензии нитросоединения и катализатора с числом оборотов мешалки 2800 в минуту происходит разрушение катализатора, в конечном итоге, загрязняющего целевой продукт; безвозвратные потери палладия в процессе фильтрации, что повышает себестоимость ТАБА, так как стоимость ТАБА определяется в основном стоимостью катализатора; продолжительность реакции гидрирования составляет в зависимости от типа установок, где осуществляется гидрирование, от 8 до 140 минут.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения катализатора для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА (см. патент №2363693. RU Способ каталитического жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА. Заявлено 22.11.2007, опубликовано: 10.08.2009 Бюл. №22), включающий: получение блочного высокопористого ячеистого катализатора с открытой пористостью не менее 70…95%, с микропористостью до 30%, состоящего из носителя на основе α-оксида алюминия с активной комбинированной активной подложкой, полученной пропиткой носителя золем γ-Аl2O3 с последующим высаживанием на нем при нагревании пиролитического углерода, и активного компонента - металлического палладия методом пропитки из растворимой соли хлорида палладия для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА при нагревании в среде растворителя - воде.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является способ получения катализатора для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА, предназначенного для уменьшения продолжительности реакции, увеличения скорости реакции за счет увеличения удельной поверхности катализатора, нагрузки ТНБА на катализатор, выхода целевого продукта.

Для достижения указанного технического результата предлагается способ получения катализатора для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА, состоящего из носителя и активной части, заключающийся в следующем:

полиуретановую матрицу ячеистой структуры пропитывают шликером, содержащим более 30% масс, α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалкой при температуре 1050…1070°С, проводят последующую пропитку полученного высокопористого ячеистого носителя алюмозолем (γ-Аl2О3), сушку при температуре 100…120°С, прокалку при температуре 550…600°C, пропитку водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокалку при температуре 350…400°C, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре не более 800°C, до 0,15…0,20% масс, от массы носителя с γ-Al2O3, затем проводят обработку раствором нитрата палладия, сушку при температуре не более 120°C и прокалку при температуре 430…450°C, восстанавливают полученный оксид палладия на носителе с комбинированной активной подложкой, состоящей из γ-Аl2О3 и углеродных нанотрубок, молекулярным водородом в азоте до металлического палладия при температуре 50…55°C.

Предлагаемый способ получения блочного высокопористого ячеистого катализатора для жидкофазного гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА подтверждается следующими примерами.

Пример 1. Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% масс, α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°С и прокаливанием при температуре 1050°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем полученный высокопористый ячеистый носитель пропитывают алюмозолем (γ-Al2O3), сушат при температуре 100…110°C, прокаливают при температуре 550°C, пропитывают водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокаливают при температуре 350…400°C, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре 780°C, до 0,15% масс, от массы носителя с γ-Al2O3, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 450°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,2% масс. при температуре 50°C.

Гидрирование 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА (ТНБА) проводят в реакторе с внутренним диаметром 50 мм. В реактор загружают растворитель (дистиллированную воду) в количестве 95 мл, добавляют 1 г ТНБА. Высокопористый ячеистый катализатор (с комбинированной активной подложкой из γ-Al2O3 и углеродных нанотрубок) массой 35,23 г, с пористостью 70-95%, микропористостью до 30% масс, содержащий 0,2% масс, палладия, помещают в среднюю часть реактора. Реактор крепится на качалке, способной производить число качаний, равное 120-160 мин-1, при этом обеспечиваются условия, при которых протекание реакции не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают температуру за счет электрообогрева, позволяющего проводить процесс гидрирования при необходимой температуре. Скорость реакции оценивают по падению давления водорода в реакторе при температуре 128°C. Продолжительность реакции до 50% превращения исходного ТНБА составляет 300 с. Реакционную массу на содержание остаточного ТНБА анализируют методом тонкослойной хроматографии.

В результате проведенного эксперимента получены следующие данные: скорость 50% превращения исходного ТНБА W50%=2,0 мл/с; константа скорости реакции первого порядка k=0,0034 с-1; нагрузка ТНБА на катализатор 0,22 ч-1. Выход ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) составляет 99,1% от теоретического.

Пример 2. Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% масс, α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°С и прокаливанием при температуре 1060°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем полученный высокопористый ячеистый носитель пропитывают алюмозолем (γ-Al2O3), сушат при температуре 100…110°С, прокаливают при температуре 570°C, пропитывают водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокаливают при температуре 350…400°C, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре 790°C, до 0,17% масс, от массы носителя с γ-Al2O3, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 440°С в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,1% масс, при температуре 55°C.

Эксперимент по гидрированию ТНБА проводят аналогично примеру 1. В реактор загружают растворитель (дистиллированная вода) в количестве 95 мл, добавляют 1 г ТНБА. Высокопористый ячеистый катализатор (с комбинированной активной подложкой из γ-Al2O3 и углеродных нанотрубок) массой 36,12 г, с открытой пористостью 70-95%, микропористостью до 30% масс, содержащий 0.10% масс, палладия, помещают в среднюю часть реактора. Скорость реакции оценивают по падению давления водорода в реакторе при температуре 129°C. Продолжительность реакции до 50% превращения исходного ТНБА составляет 232 с. Скорость 50% превращения исходного ТНБА W50%=2,5 мл/с. Константа скорости реакции первого порядка k=0,0042 с-1; нагрузка ТНБА на катализатор 0,31 ч-1. Выход ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) составляет 99,4% от теоретического.

Пример 3. Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% масс, α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°C и прокаливанием при температуре 1065°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем полученный высокопористый ячеистый носитель пропитывают алюмозолем (γ-Al2O3), сушат при температуре 100…110°C, прокаливают при температуре 580°С, пропитывают водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокаливают при температуре 350…400°C, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре 800°C, до 0,20% масс, от массы носителя с γ-Al2O3, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 430°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,13% масс, при температуре 50°C.

Эксперимент по гидрированию ТНБА проводят аналогично примеру 1.

В реактор загружают растворитель (дистиллированная вода) в количестве 95 мл, добавляют 1 г ТНБА. Высокопористый ячеистый катализатор (с комбинированной активной подложкой из γ-Al2O3 и пиролитического углерода) массой 33,83 г, с пористостью 70-95%, микропористостью до 30% масс, содержащий 0,13% масс, палладия, помещают в среднюю часть реактора. Скорость реакции оценивают по падению давления водорода в реакторе при температуре 130°С. Продолжительность реакции до 50% превращения исходного ТНБА составляет 215 с. Скорость 50% превращения исходного ТНБА W50%=2,2 мл/с. Константа скорости реакции первого порядка k=0,0087 с-1; нагрузка ТНБА на катализатор 0,20 ч-1. Выход ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) составляет 99,2% от теоретического.

Пример 4. Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% масс, α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°C и прокаливанием при температуре 1050°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем полученный высокопористый ячеистый носитель пропитывают алюмозолем (γ-Al2O3), сушат при температуре 100…110°C, прокаливают при температуре 600°С, пропитывают водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокаливают при температуре 350…400°C, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре не более 790°C, до 0,15% масс, от массы носителя с γ-Al2O3, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 450°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,1% масс. при температуре 50°C.

Эксперимент по гидрированию ТНБА проводят аналогично примеру 1.

Эксперимент проводят аналогично примеру 1. В реактор загружают растворитель (дистиллированная вода) в количестве 95 мл, добавляют 1 г ТНБА. Высокопористый ячеистый катализатор (с комбинированной активной подложкой из γ-Al2O3 и пиролитического углерода) массой 32,20 г, с пористостью 70-95%, микропористостью до 30% масс., содержащий 0,1% масс палладия, помещают в среднюю часть реактора. Скорость реакции оценивают по падению давления в реакторе при температуре 150°C. Продолжительность реакции до 50% превращения исходного ТНБА составляет 102 с. Скорость 50% превращения исходного ТНБА W50%=2,7 мл/с. Константа скорости реакции первого порядка k=0,0099 с-1; нагрузка ТНБА на катализатор 0,42 ч-1. Выход ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) составляет 99,45% от теоретического.

Во всех приведенных примерах после выполненных испытаний отсутствовала эрозия блочного высокопористого ячеистого катализатора, об этом можно было судить по прозрачности реакционной массы и как следствие этого: перед выполнением анализов на содержание компонентов реакционной массы не требовалось дополнительной фильтрации.

Предлагаемое изобретение предназначено для уменьшения продолжительности реакции, увеличения скорости реакции за счет увеличения удельной поверхности катализатора, нагрузки ТНБА на катализатор, выхода целевого продукта.

Стоимость ТАБА (2',4',4-ТРИАМИНОБЕНЗАНИЛИДА) определяется в основном стоимостью катализатора, применяемого для жидкофазного гидрирования. Эксперименты и расчеты показывают, что регенерация блочного палладиевого катализатора обходится дешевле более 10 раз, чем приготовление свежего, число регенераций блочного катализатора может достигать более 50.

Похожие патенты RU2532733C1

название год авторы номер документа
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2007
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Козлов Иван Александрович
  • Кузнецов Леонид Александрович
  • Колесников Владимир Александрович
  • Хитров Николай Вячеславович
  • Градов Владимир Павлович
RU2363693C1
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2005
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Акинин Николай Иванович
  • Татаринова Ирина Николаевна
  • Жубриков Андрей Владимирович
  • Хитров Николай Вячеславович
  • Ефремов Анатолий Ильич
  • Стародубцев Виктор Степанович
RU2288911C1
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2007
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Козлов Иван Александрович
  • Стародубцев Виктор Степанович
  • Ефремов Анатолий Ильич
  • Хитров Николай Вячеславович
  • Градов Владимир Павлович
RU2349581C2
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 2013
  • Румянцева Ольга Викторовна
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Ревина Александра Анатольевна
  • Авраменко Григорий Владимирович
  • Гаспарян Микаэл Давидович
RU2532659C1
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА В ИЗОПРОПАНОЛЕ НА ВЫСОКОПОРИСТОМ ЯЧЕИСТОМ ПАЛАДИЙСОДЕРЖАЩЕМ КАТАЛИЗАТОРЕ (ВПЯПК) 2005
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Стародубцев Виктор Степанович
  • Ефремов Анатолий Ильич
  • Хитров Николай Вячеславович
  • Жубриков Андрей Владимирович
RU2293079C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПОРИСТЫХ ЯЧЕИСТЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2011
  • Беспалов Александр Валентинович
  • Гаврилов Юрий Владимирович
  • Игнатенкова Валентина Владимировна
  • Грунский Владимир Николаевич
  • Гаспарян Микаэл Давидович
  • Игнатенков Владимир Иванович
  • Лукин Евгений Степанович
RU2475464C2
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ ВОДОРОДА 2014
  • Гаспарян Микаэл Давидович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Попова Неля Александровна
  • Ваграмян Тигран Ашотович
  • Розенкевич Михаил Борисович
  • Пак Юрий Самдорович
  • Марунич Сергей Андреевич
  • Сумченко Анна Сергеевна
RU2546120C1
ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР С КИСЛОТНЫМИ СВОЙСТВАМИ ДЛЯ МОДИФИЦИРОВАНИЯ КАНИФОЛИ 2007
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Козлов Иван Александрович
  • Градов Владимир Павлович
  • Ходов Николай Владимирович
  • Куимов Андрей Федорович
  • Долинский Тарас Иванович
RU2329866C1
СПОСОБ ПОЛУЧЕНИЯ 2`, 4`, 4-ТРИАМИНОБЕНЗАНИЛИДА 1992
  • Хейфец В.И.
  • Пивоненкова Л.П.
  • Любимова Т.Б.
  • Чекова О.А.
  • Ершова Н.Г.
  • Шкуро В.Г.
  • Милицин И.А.
  • Нагоров А.М.
  • Суслов А.В.
  • Шевницин Л.С.
RU2041200C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО НОСИТЕЛЯ КАТАЛИЗАТОРА 2014
  • Михайличенко Анатолий Игнатьевич
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Либерман Елена Юрьевна
  • Гаспарян Микаэл Давидович
  • Кочнев Александр Михайлович
  • Иванов Виктор Владимирович
  • Волков Иван Александрович
  • Карпович Анастасия Леонидовна
  • Стопани Ольга Игоревна
  • Старцев Сергей Анатольевич
RU2564672C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА

Изобретение относится к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких полимеров, синтезе высокопрочных волокон и т.д. Способ получения катализатора для жидкофазного гидрирования 2',4',4-тринитробензанилида включает пропитку полиуретановой матрицы ячеистой структуры шликером, содержащим более 30 мас.% α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре 1050…1070°С, последующую пропитку полученного высокопористого ячеистого носителя алюмозолем (γ-Аl2O3), сушку при температуре 100…120°С, прокалку при температуре 550…600°C, последующую пропитку водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокалку при 350…400°C, а после прокаливания нанесение углеродных нанотрубок, полученных пиролизом метана при температуре не более 800°C, до 0,15…0,20% мас.% от массы носителя с γ-Аl2O3. затем обработку раствором нитрата палладия, сушку при температуре не более 120°C и прокалку при температуре 430…450°C, восстановление полученного оксида палладия на носителе молекулярным водородом в азоте до металлического палладия при температуре 50…55°C. Технический результат заключается в уменьшении продолжительности реакции, увеличении скорости реакции за счет увеличения удельной поверхности катализатора, нагрузки ТНБА на катализатор, выхода целевого продукта. 4 пр.

Формула изобретения RU 2 532 733 C1

Способ получения блочного высокопористого ячеистого катализатора для жидкофазного гидрирования 2',4',4-тринитробензанилида с открытой пористостью не менее 70…95%, с микропористостью до 30%, состоящего из носителя на основе α-оксида алюминия с комбинированной активной подложкой из γ-Аl2O3 и углерода, и активного компонента - палладия для жидкофазного гидрирования 2',4',4-тринитробензанилида при нагревании в среде растворителя - воде, отличающийся тем, что носитель готовят путем пропитки полиуретановой матрицы ячеистой структуры шликером, содержащим более 30 мас.% α-оксида алюминия, подсушивают при температуре 100…120°С, прокаливают при температуре 1050…1070°С, проводят последующую пропитку полученного высокопористого ячеистого носителя алюмозолем (γ-Аl2O3), сушат при температуре 100…120°С, прокаливают при температуре 550…600°С, затем пропитывают водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокаливают при температуре 350…400°С, а после прокаливания наносят углеродные нанотрубки, полученные пиролизом метана при температуре не более 800°С, до 0,15…0,20 мас.% от массы носителя с γ-Аl2O3, пропитывают раствором нитрата палладия, сушат при температуре не более 120°С и прокаливают при температуре 430…450°С, восстанавливают полученный оксид палладия на носителе с комбинированной активной подложкой, состоящей из γ-Аl2O3 и углеродных нанотрубок, молекулярным водородом в азоте до металлического палладия при температуре 50…55°С.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532733C1

СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2007
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Козлов Иван Александрович
  • Кузнецов Леонид Александрович
  • Колесников Владимир Александрович
  • Хитров Николай Вячеславович
  • Градов Владимир Павлович
RU2363693C1
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2005
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Акинин Николай Иванович
  • Татаринова Ирина Николаевна
  • Жубриков Андрей Владимирович
  • Хитров Николай Вячеславович
  • Ефремов Анатолий Ильич
  • Стародубцев Виктор Степанович
RU2288911C1
СПОСОБ ПОЛУЧЕНИЯ 2`, 4`, 4-ТРИАМИНОБЕНЗАНИЛИДА 1992
  • Хейфец В.И.
  • Пивоненкова Л.П.
  • Любимова Т.Б.
  • Чекова О.А.
  • Ершова Н.Г.
  • Шкуро В.Г.
  • Милицин И.А.
  • Нагоров А.М.
  • Суслов А.В.
  • Шевницин Л.С.
RU2041200C1

RU 2 532 733 C1

Авторы

Беспалов Александр Валентинович

Гаврилов Юрий Владимирович

Игнатенкова Валентина Владимировна

Грунский Владимир Николаевич

Гаспарян Микаэл Давидович

Даты

2014-11-10Публикация

2013-06-18Подача