ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР С КИСЛОТНЫМИ СВОЙСТВАМИ ДЛЯ МОДИФИЦИРОВАНИЯ КАНИФОЛИ Российский патент 2008 года по МПК B01J23/44 B01J21/04 B01J21/06 C09F1/04 

Описание патента на изобретение RU2329866C1

Изобретение относится к химико-технологическим процессам, а именно к приготовлению катализатора для использования его в технологии получения продуктов из природных смол, например канифоли, в частности к модифицированию живичной канифоли.

Канифоль является продуктом первичной переработки природных смол, в первую очередь сосновой живицы, и широко применяется в различных отраслях. Для природной канифоли характерно высокое содержание непредельных смоляных кислот, в основном абиетиновых, склонных к окислению кислородом воздуха и изменению своих физико-химических свойств во времени. Для снижения содержания абиетиновых кислот в природной канифоли используют в основном два метода модификации: гидрирование и диспропорционирование.

Известны катализаторы диспропорционирования:

йод или в чистом виде, или с промоторами (см. патент № 299080, Голландия; патент № 2060637, Англия). К недостаткам таких катализаторов относят высокую стоимость йода, значительное снижение кислотного числа из-за декарбоксилирования при высоких температурах процесса, загрязнение окружающей среды йодом и продуктами его превращения, в том числе алкилйодидами;

сера и селен, их оксиды и соединения на различных носителях, например на цеолитах (см. а.с. СССР № 763420, Зандерман В. Природные смолы, скипидар, таловое масло. М.: Лесная промышленность. 1964, С.257-260). К недостаткам катализаторов относят потемнение канифоли, высокую ядовитость селена;

твердофазные катализаторы гидрирования, например никель. К недостаткам катализаторов относят низкую активность, способность растворяться в канифоли, что приводит к необходимости дополнительной очистки канифоли с помощью ректификации;

катализаторы, содержащие палладий, нанесенный на активированный уголь (см. патенты России № 2055848 и № 2081143). К недостаткам катализаторов относят образование промежуточных продуктов, эрозию и разрушение угля, содержание палладия, загрязняющего целевой продукт, безвозвратные потери палладия.

Ближайшим аналогом является смешанный катализатор для модифицирования (диспропорционирования) канифоли, состоящий из сокатализатора (отвержденная обезвоженная кислотоактивированная глина бентонитового типа) и катализатора - палладийсодержащего угля (см. патент № 2055848, Россия). Расплав природной канифоли пропускают последовательно через сокатализатор и затем через катализатор, обеспечивая при этом остаточное содержание абиетиновых кислот, равное 1...2% мас. при высоком кислотном числе (наблюдается снижение на 1...3 единицы по сравнению с исходным продуктом). Температура в каталитической зоне равна 220°С. К недостаткам смешанного катализатора можно отнести образование промежуточных продуктов, эрозию и разрушение палладийсодержащего угля, загрязняющего целевой продукт, безвозвратные потери палладия, необходимость отделения конечного продукта от катализатора. Перемешивание канифоли осуществляется аргоном, что приводит к дополнительным экономическим затратам.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является высокопористый ячеистый катализатор с кислотными свойствами для модифицирования природной канифоли (см. патент № 2279913, Россия).

В качестве основы катализатора используют высокопористый ячеистый носитель из α-оксида алюминия, а в качестве активного компонента - отличающиеся высокой кислотностью сульфатированные оксиды металлов IV группы (диоксид титана, диоксид циркония и др.) и металлический палладий с массовым содержанием, равным 2,0...2,8%.

Высокопористый ячеистый носитель для катализатора изготавливают из ретикулированного пенополиуретана, пропитывая последний шликером, содержащим более 30% α-оксида алюминия, затем его сушат при 100...200°С, прокаливают при температуре 1300...1500°С. Полученный высокопористый ячеистый носитель содержит более 90% α-оксида алюминия. На поверхность носителя для развития поверхности катализатора наносят оксиды металлов IV группы. Для этого носитель пропитывают водными растворами солей циркония, например хлористого цирконила или нитрата циркония, сушат при температуре 100...200°С и прокаливают при температуре 450...950°С. Содержание оксида металла в катализаторе составляет 4...10% мас.

Полученные образцы пропитывают раствором серной кислоты (5...10% мас.), подсушивают и прокаливают при температуре 550...650°С.

Каталитически активный компонент - палладий наносят на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия). Термообработку нанесенного слоя нитрата палладия проводят при температуре 450...550°С. Восстановление оксида палладия до металлического палладия осуществляют молекулярным водородом.

Изготовленный по такой технологии катализатор имеет плотность 0,3...0,4 г/см3, что соответствует пористости 90...93%, микропористость 20...30%, средний размер пор 0,5...2,0 мкм, механическую прочность до 2,0 МПа.

Недостатком полученного катализатора является высокое содержание металлического палладия в активном компоненте (2,0...2,8% мас.)

Техническим результатом, на достижение которого направлен заявляемый способ приготовления катализатора, является уменьшение содержания металлического палладия в активном компоненте катализатора и сохранение или увеличение нагрузки на катализатор, т.е. съема гидрированной канифоли с катализатора в единицу времени (ч-1).

В качестве основы катализатора используют высокопористый ячеистый носитель из α-оксида алюминия, а в качестве активного компонента - γ-оксид алюминия в количестве не менее 10% мас. от количества α-Al2О3, сульфатированные оксиды металлов IV группы (диоксид циркония в количестве не более 8% мас.), отличающиеся высокой кислотностью, и металлический палладий с массовым содержанием не более 0,2%.

Высокопористый ячеистый носитель для катализатора изготавливают из ретикулированного пенополиуретана, пропитывая последний шликером, содержащим более 30% α-оксида алюминия, затем его сушат при 100...200°С, прокаливают при температуре 1300...1500°С. Полученный высокопористый ячеистый носитель содержит более 90% α-оксида алюминия. На поверхность носителя для развития поверхности катализатора наносят золь γ-оксида алюминия в количестве не менее 10% мас. от количества α-Al2О3 (термообработку проводят при температуре 860...1000°С), оксиды металлов IV группы, отличающиеся высокой кислотностью. Для этого носитель пропитывают водными растворами солей циркония, например хлористого цирконила или нитрата циркония, сушат при температуре 100...200°С и прокаливают при температуре 450...950°С. Содержание диоксида циркония в катализаторе не более 8% мас.

Полученные образцы пропитывают раствором серной кислоты (1,5...3,0% мас.), подсушивают и прокаливают при температуре 550...650°С

Каталитически активный компонент - палладий наносят на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия), предварительно обработанных в постоянном магнитном поле. Термообработку нанесенного слоя нитрата палладия проводят при температуре 450...550°С. Восстановление оксида палладия до металлического палладия осуществляют молекулярным водородом.

Изготовленный по такой технологии катализатор имеет плотность 0,2...0,4 г/см3, что соответствует пористости 90...95%, микропористость 20...30%, средний размер пор 0,5...2,0 мкм, механическую прочность до 2,0 МПа.

Использование высокопористого ячеистого катализатора, изготовленного в виде единого блока, через который проходит поток канифоли и азот или водород, благодаря развитой внешней и внутренней поверхности обеспечивает высокую скорость модифицирования, а благодаря высокой механической прочности практически полностью исключает измельчение и унос катализатора.

Процесс модификации живичной канифоли успешно протекает только при совместном применении сульфатированных оксидов высокой кислотности (диоксид циркония, диоксид титана, и др.) и металлического палладия.

Пример 1.

В обогреваемый цилиндрический реактор с внутренним диаметром 50 мм и полезным объемом 400 мл загружают 25 г живичной канифоли. В среднюю часть реактора помещают высокопористый ячеистый катализатор массой 26,7 г в виде единого блока с активной подложкой из γ-оксида алюминия в количестве не менее 10% мас. от количества α-Al2О3, сульфатированного диоксида циркония (в количестве не более 8% мас.) и с активным компонентом палладием (0,2 мас.%), нанесенным на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия), предварительно обработанных в постоянном магнитном поле. Свободный объем реактора заполняют азотом давлением 0,2 МПа. Реакция диспропорционирования проводится в течение 50 минут в реакторе при температуре 160°С. Остаточное содержание абиетиновых кислот в реакционной смеси 2,8% масс.

Пример 2 аналогичен примеру 1.

При температуре 160...170°С продолжительность реакции 55 минут. Остаточное содержание абиетиновой кислоты в реакционной смеси 2,2% мас.

Пример 3 аналогичен примеру 1. При температуре 160...170°С продолжительность реакции 60 минут. Остаточное содержание абиетиновых кислот в реакционной смеси 1,78% мас.

Пример 4.

Эксперимент проводят аналогично примеру 1. В реактор загружают 4 г живичной канифоли и 90 мл этилового спирта. Высокопористый ячеистый катализатор массой 21,55 г с активной подложкой из γ-оксида алюминия в количестве не менее 10% масс. от количества α-Al2О3, сульфатированного диоксида циркония (в количестве не более 8% мас.) и с активным компонентом палладием (0,2 мас.%), нанесенным на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия), предварительно обработанных в постоянном магнитном поле, помещают в среднюю часть реактора. Свободный объем реактора заполняют водородом до исходного давления 0,7 МПа. Скорость реакции оценивают по падению давления в реакторе при температуре 115°С. Продолжительность реакции составляет 120 с. Скорость реакции 2,75 мл/с. Остаточное содержание абиетиновых кислот в реакционной смеси не более 0,1% мас.

Пример 5.

Эксперимент проводят аналогично примеру 1. В реактор загружают загружают 4 г живичной канифоли и 90 мл этилового спирта. Высокопористый ячеистый катализатор массой 29,25 г с активной подложкой из γ-оксида алюминия в количестве не менее 10% мас. от количества α-Al2О3, сульфатированного диоксида циркония (в количестве не более 8% мас.) и с активным компонентом палладием (0,2 мас.%), нанесенным на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия), предварительно обработанных в постоянном магнитном поле, помещают в среднюю часть реактора. Свободный объем реактора заполняют водородом до исходного давления, равного 0,7 МПа. Скорость реакции оценивают по падению давления в реакторе при температуре 112°С. Продолжительность реакции составляет 130 с. Скорость реакции 4,46 мл/с. Остаточное содержание абиетиновых кислот в реакционной смеси не более 0,1% мас.

Пример 6.

Эксперимент проводят аналогично примеру 1. В реактор загружают 4 г живичной канифоли и 90 мл этилового спирта. Высокопористый ячеистый катализатор массой 29,2 г с активной подложкой из γ-оксида алюминия в количестве не менее 10% мас. от количества α-Al2О3, сульфатированного диоксида циркония (в количестве не более 8% мас.) и с активным компонентом палладием (0,19 мас.%), нанесенным на высокопористый ячеистый носитель методом пропитки из растворимых солей палладия (нитрата палладия), предварительно обработанных в постоянном магнитном поле, помещают в среднюю часть реактора. Свободный объем реактора заполняют водородом до исходного давления 0,7 МПа. Скорость реакции оценивают по падению давления в реакторе при температуре 106°С. Продолжительность реакции составляет 140 с, нагрузка на катализатор 6,16 ч-1.Скорость реакции 3,90 мл/с. Остаточное содержание абиетиновых кислот в реакционной смеси не более 0,1% мас.

Реакционную массу на содержание массовой доли абиетиновых кислот анализировали по ТУ 2453-034-00279893-2002. Было показано, что реакционная смесь содержит не более 0,1% абиетиновых кислот (соответствует ГОСТ 19113-84). Выход конечного продукта составляет 98-99%.

В новом высокопористом ячеистом катализаторе с кислотными свойствами для модифицирования живичной канифоли содержание металлического палладия в активном компоненте уменьшено более чем в 10 раз при сохранении нагрузки на катализатор 5-7 ч-1 и остаточном содержании абиетиновых кислот не более 0,1% мас. для гидрированной и около 3% мас. для диспропорционированной канифоли.

После процесса модифицирования живичной канифоли блочный высокопористый ячеистый катализатор подвергают регенерации. Число регенерации блочного высокопористого ячеистого катализатора достигает пятидесяти без потери его первоначальной активности.

Похожие патенты RU2329866C1

название год авторы номер документа
ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР С КИСЛОТНЫМИ СВОЙСТВАМИ ДЛЯ МОДИФИЦИРОВАНИЯ КАНИФОЛИ 2004
  • Грунский Владимир Николаевич
  • Долинский Тарас Иванович
  • Евграфова Наталья Владимировна
  • Збарский Витольд Львович
  • Козлов Александр Иванович
RU2279913C1
ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР ДЛЯ ПРОЦЕССОВ ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2005
  • Козлов Александр Иванович
  • Збарский Витольд Львович
  • Ходов Николай Владимирович
  • Куимов Андрей Федорович
RU2333795C2
КАТАЛИЗАТОР ДЛЯ ГИДРООЧИСТКИ БЕНЗИНОВЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2006
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Колесников Владимир Александрович
  • Козлов Иван Александрович
  • Абдрахманова Гульнара Магзуровна
  • Чернышева Елена Александровна
RU2322292C1
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2007
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Козлов Иван Александрович
  • Стародубцев Виктор Степанович
  • Ефремов Анатолий Ильич
  • Хитров Николай Вячеславович
  • Градов Владимир Павлович
RU2349581C2
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА В ИЗОПРОПАНОЛЕ НА ВЫСОКОПОРИСТОМ ЯЧЕИСТОМ ПАЛАДИЙСОДЕРЖАЩЕМ КАТАЛИЗАТОРЕ (ВПЯПК) 2005
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Стародубцев Виктор Степанович
  • Ефремов Анатолий Ильич
  • Хитров Николай Вячеславович
  • Жубриков Андрей Владимирович
RU2293079C1
СПОСОБ ГИДРООБЛАГОРАЖИВАНИЯ НЕФТЯНЫХ ДИСТИЛЛЯТОРОВ 2006
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Збарский Витольд Львович
  • Капустин Владимир Михайлович
  • Чернышева Елена Александровна
  • Абдрахманова Гульнара Магзуровна
RU2302448C1
СПОСОБ ОЧИСТКИ СУЛЬФАТНОГО СКИПИДАРА ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ 2011
  • Козлов Александр Иванович
  • Беспалов Александр Валентинович
  • Грунский Владимир Николаевич
  • Козлов Иван Александрович
  • Козлова Вера Венидиктовна
  • Ходов Николай Владимирович
  • Куимов Андрей Федорович
  • Долинский Тарас Иванович
RU2485154C1
СПОСОБ ГИДРИРОВАНИЯ КАНИФОЛИ В РЕАКТОРЕ С БЛОЧНЫМ ЯЧЕИСТЫМ КАТАЛИЗАТОРОМ 2003
  • Долинский Тарас Иванович
  • Дьяков Михаил Валерьевич
  • Збарский Витольд Львович
  • Козлов Александр Иванович
  • Куимов Андрей Федорович
  • Лукин Евгений Степанович
  • Титов Анатолий Иванович
  • Ходов Николай Владимирович
RU2278140C2
СПОСОБ КАТАЛИТИЧЕСКОГО ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА 2005
  • Козлов Александр Иванович
  • Грунский Владимир Николаевич
  • Беспалов Александр Валентинович
  • Акинин Николай Иванович
  • Татаринова Ирина Николаевна
  • Жубриков Андрей Владимирович
  • Хитров Николай Вячеславович
  • Ефремов Анатолий Ильич
  • Стародубцев Виктор Степанович
RU2288911C1
СПОСОБ ПОЛУЧЕНИЯ 1,5-ДИАМИНОНАФТАЛИНА 2005
  • Козлов Александр Иванович
  • Збарский Витольд Львович
  • Грунский Владимир Николаевич
  • Батырев Александр Васильевич
  • Комаров Александр Алексеевич
  • Меркин Александр Александрович
RU2307120C2

Реферат патента 2008 года ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР С КИСЛОТНЫМИ СВОЙСТВАМИ ДЛЯ МОДИФИЦИРОВАНИЯ КАНИФОЛИ

Изобретение относится к каталитическим жидкофазным процессам, а именно к приготовлению катализатора для использования его в технологии получения продуктов из природных смол, например канифоли, в частности к модифицированию живичной канифоли. Описан высокопористый ячеистый катализатор для модифицирования живичной канифоли, состоящий из носителя - высокопористого ячеистого блочного материала на основе α-оксида алюминия и активной части катализатора сульфатированного оксида металла IV группы и металлического палладия, при этом носитель пропитывают растворимыми солями палладия, предварительно обработанными в постоянном магнитном поле, а в состав активной части катализатора входит ϒ-Al2О3 в количестве не менее 10% мас. от количества α-Al2O3, сульфатированный диоксид циркония в количестве не более 8% мас, металлический палладий в количестве не более 0,2% мас. Технический результат - уменьшение содержания металлического палладия в активном компоненте более чем в 10 раз при сохранении нагрузки на катализатор 5-7 ч-1 и остаточном содержании абиетиновых кислот не более 0,1% мас дли гидрированной и около 3% диспропорционированной канифоли.

Формула изобретения RU 2 329 866 C1

Высокопористый ячеистый катализатор для модифицирования живичной канифоли, состоящий из носителя - высокопористого ячеистого блочного материала на основе α-Al2О3 и активной части катализатора сульфатированного оксида металла IV группы и металлического палладия, отличающийся тем, что носитель пропитывают растворимыми солями палладия, предварительно обработанными в постоянном магнитном поле, а в состав активной части катализатора входит γ-Al2О3 в количестве не менее 10 мас.% от количества α-Al2О3, сульфатированный диоксид циркония в количестве не более 8 мас.%, металлический палладий в количестве не более 0,2 мас.%.

Документы, цитированные в отчете о поиске Патент 2008 года RU2329866C1

ВЫСОКОПОРИСТЫЙ ЯЧЕИСТЫЙ КАТАЛИЗАТОР С КИСЛОТНЫМИ СВОЙСТВАМИ ДЛЯ МОДИФИЦИРОВАНИЯ КАНИФОЛИ 2004
  • Грунский Владимир Николаевич
  • Долинский Тарас Иванович
  • Евграфова Наталья Владимировна
  • Збарский Витольд Львович
  • Козлов Александр Иванович
RU2279913C1
RU 2055848 C1, 10.03.1996
СПОСОБ ГИДРИРОВАНИЯ КАНИФОЛИ В РЕАКТОРЕ С БЛОЧНЫМ ЯЧЕИСТЫМ КАТАЛИЗАТОРОМ 2003
  • Долинский Тарас Иванович
  • Дьяков Михаил Валерьевич
  • Збарский Витольд Львович
  • Козлов Александр Иванович
  • Куимов Андрей Федорович
  • Лукин Евгений Степанович
  • Титов Анатолий Иванович
  • Ходов Николай Владимирович
RU2278140C2
JP 63081181, 12.04.1988
Основание блока буровой установки 1982
  • Валиев Заил Закирович
  • Михайлов Лев Николаевич
SU1021757A1
RU 2004136078 A, 20.05.2006.

RU 2 329 866 C1

Авторы

Козлов Александр Иванович

Грунский Владимир Николаевич

Беспалов Александр Валентинович

Козлов Иван Александрович

Градов Владимир Павлович

Ходов Николай Владимирович

Куимов Андрей Федорович

Долинский Тарас Иванович

Даты

2008-07-27Публикация

2007-04-23Подача