Изобретение относится к области получения полупроводниковых материалов, а именно к получению монокристаллов антимонида галлия, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму оптоэлектронных приборов (источников и приемников излучения на спектральный диапазон 1,3-2,5 мкм).
Общей тенденцией развития технологий изготовления приборов на основе данных структур является переход к матричному исполнению. Вследствие этого появляется необходимость использования монокристаллов все большего диаметра при сохранении жестких требований к совершенству структуры. Как правило, при создании изопериодных гетероструктур Al-Ga-As-Sb и In-Ga-As-Sb в качестве элементной базы используются подложки антимонида галлия с рабочей ориентацией (100). Одним из самых главных требований к материалу подложки является минимальная величина плотности дислокационных ямок травления при условии равномерного распределения их по ее поверхности.
Технической задачей, решаемой данным изобретением, является получение крупногабаритных монокристаллов антимонида галлия в кристаллографическом направлении [100] с минимальной плотностью дислокации.
Известен способ получения объемных кристаллов антимонида галлия из обогащенных галлием расплавов с использованием дополнительного источника антимонида галлия. Предлагаемый способ аналогичен известному в практике получения полупроводниковых материалов способу выращивания монокристаллов из двойного тигля, используемому, как правило, для получения сильнолегированных кристаллов, с коэффициентом распределения примеси, значительно отличающимся от единицы.
В предлагаемом способе, по мнению авторов, устойчивость условий роста кристаллов достигается именно за счет использования двойного тигля (ростового и источникового), конструкция которых представляет собой сообщающиеся сосуды, позволяющие поддерживать постоянство стехиометрического состава расплава в ростовом тигле (Watanabe Akiyoshi, Tanaka Akira, Sukegawa Tokuzo, / Journal of Crystal Growth, 128 (1-4), p. 462-465, Mar 1993).
Недостатком данного способа является наличие большого количества двойников в выращиваемом слитке, поэтому получение малодислокационных кристаллов практически невозможно. Данный способ может быть рекомендован для получения крупноблочного, с высокой степенью гомогенности, поликристаллического материала, который может являться всего лишь исходным сырьем для последующего выращивания малодислокационных монокристаллов. Использование этого метода является нецелесообразным для получения крупногабаритных монокристаллов антимонида галлия с высоким структурным совершенством (с малой плотностью дислокации, равномерно распределенных по кристаллу).
Известен способ получения монокристаллов соединений A3B5 методом Чохральского с жидкостной герметизацией расплава с помощью флюса B2O3. Достоинством метода является использование специального устройства, позволяющего поддерживать стехиометрию расплава в течение всего процесса получения за счет регулирования испарения легколетучего компонента. Это является весьма важным условием для получения всех полупроводниковых соединений, но наиболее актуально для соединений с большой упругостью пара легколетучего компонента в точке плавления, к каким антимонид галлия не относится [патент США №5256381, C30B 35/00 (НПК 117/213, опубл. 26.10.1993)].
Недостатком данного способа является использование флюса B2O3, который из-за высокой динамической вязкости при температуре плавления антимонида галлия (706°C) является малопригодным для получения монокристаллов этого соединения, являющегося одним из самых низкотемпературных в ряду соединений A3B5 (Tпл.=712°C). Кроме того, использование флюса B2O3 с высокой степенью чистоты не исключает возможности образования дополнительных центров гетерогенного зарождения дислокации на фронте кристаллизации.
Известен способ получения нелегированных и легированных теллуром монокристаллов антимонида галлия методом Чохральского в кристаллографических направлениях [100] и [111] диаметром до 50 мм и массой 600-1000 г в совмещенном процессе синтеза и выращивания в атмосфере чистого водорода. Достоинством способа является использование кассетного устройства, позволяющего избавляться от шлаковых образований на поверхности расплава в процессе синтеза и гомогенизации расплава. [А novel technique for Czochralski growth of GaSb single crystals. Mo, P.G.; Tan, H.Z.; Du, L.X.; Fan, X.Q. / Journal of Crystal Growth, 126 (4), p. 613-616, Feb 1993]. Данный способ получения был выбран в качестве прототипа.
Недостатками способа являются крайне усложненная система очистки расплава, которая по приведенным в статье результатам не исключает образования двойников в выращенном кристалле, а также ограниченный объем загрузки исходных компонентов до 1 кг, что не позволяет выращивать монокристаллы диаметром более 50 мм. Кроме того, по-видимому, способ предполагает использование статической атмосферы водорода, что нетехнологично и не может обеспечить зеркальной поверхности расплава на протяжении всего процесса выращивания. Следствием этого является наличие большого количества двойников в выращиваемых слитках, что исключает получение малодислокационного материала.
Техническим результатом изобретения является:
- получение крупногабаритных (не менее 60 мм) монокристаллов антимонида галлия в кристаллографическом направлении [100] с пониженной плотностью дислокации ((4-5)×102 м-2);
- снижение энерго-, материало- и трудозатрат процесса получения за счет улучшения совершенства структуры получаемых монокристаллов.
Технический результат достигается тем, что в способе получения монокристаллов антимонида галлия, включающем синтез и выращивание монокристалла методом Чохральского в атмосфере водорода на затравку, ориентированную в кристаллографическом направлении [100], согласно изобретению к исходным компонентам добавляют изовалентную примесь индия в виде особо чистого антимонида индия (InSb), в интервале концентраций элементарного индия (2-4)×1018 ат/см3, а синтез и выращивание монокристаллов осуществляют в едином технологическом цикле. При этом процесс синтеза и выращивания монокристаллов антимонида галлия осуществляют в атмосфере протока особо чистого водорода.
Сущность предлагаемого способа состоит в том, что для получения крупногабаритных малодислокационных монокристаллов антимонида галлия к исходным сурьме и галлию добавляют электрически нейтральную изовалентную примесь индия в виде особо чистого антимонида индия в интервале концентраций элементарного индия ((2-4)×1018 ат/см3), а синтез и выращивание монокристаллов осуществляют в едином технологическом цикле. Заявленные условия выращивания крупногабаритных малодислокационных монокристаллов антимонида галлия в совмещенном процессе синтеза и выращивания монокристалла антимонида галлия обеспечивают получение материала высокого структурного совершенства с пониженной плотностью дислокации ((4-5)×102 м-2).
Введение изовалентной примеси в виде элементарного индия ухудшает условия выращивания монокристаллов, так как растворимость элементарного индия в антимониде галлия значительно ниже, чем растворимость антимонида индия, который образует с антимонидом галлия непрерывный ряд твердых растворов.
Изменение заявленных концентраций элементарного индия, а именно увеличение или уменьшение этих концентраций нарушает условия получения крупногабаритных монокристаллов антимонида галлия с плотностью дислокации ((4-5)×102 см-2).
Пример осуществления способа.
Для получения крупногабаритных малодислокационных монокристаллов антимонида галлия исходные компоненты (чистотой 6N) 727 г галлия и 1273 г сурьмы (в стехиометрическом соотношении), а также 0,95 г особо чистого антимонида индия (что соответствует заявленной концентрации 2×1018 ат/см3 введенного индия) загружают в фильтрующий тигель, устанавливаемый в рабочий тигель печи выращивания кристаллов методом Чохральского. После вакуумирования печи до 1·10-3 мм рт.ст. в камеру подают особо чистый водород с точкой росы не менее (-65)°C и скоростью протока 80 л/час. Исходные компоненты (Ga и Sb) расплавляют при температуре 930°C и выдерживают расплав в течение 35 мин. Затем проводят фильтрацию расплава в рабочий тигель через отверстие в дне фильтрующего тигля, при этом происходит дополнительная очистка расплава от случайных механических загрязнений и окисных образований, остающихся на стенках фильтрующего тигля. Полнота прохождения синтеза (гомогенизация расплава) в столь короткое время обеспечивается интенсивностью перемешивания расплавленных компонентов при прохождении их через отверстие в фильтрующем тигле. Снизив температуру расплава в рабочем тигле до температуры, близкой к температуре кристаллизации антимонида галлия (712°C), проводят выращивание монокристалла на затравку с кристаллографической ориентацией [100] со скоростью 3-3,5 см/час с вращением тигля и затравки в противоположных направлениях со скоростями 10-12 об/мин и 20-25 об/мин, соответственно.
Заявленный интервал концентраций введенного в кристалл индия в виде особо чистого антимонида индия ((2-4)×1018 ат/см3) обусловлен следующим. При превышении концентрации введенного индия более 4×1018 ат/см3 плотность дислокации в выращиваемых кристаллах существенно возрастает (см. рис.1). Кроме того, при концентрациях индия более 4×1018 ат/см3 для обеспечения стабильности монокристаллического роста необходимо резкое снижение скоростей выращивания, что является крайне нетехнологичным.
При уменьшении концентрации введенного индия менее 2×1018 ат/см3 плотность дислокации в получаемых монокристаллах также возрастает (см. рис.1).
По предлагаемому способу при заявляемых условиях проведения процесса выращивания, а именно введения индия в виде особо чистого антимонида индия в интервале концентраций элементарного индия ((2-4)×1018 ат/см), была выращена серия крупногабаритных нелегированных монокристаллов антимонида галлия с плотностью дислокации в интервале ((4-5)×102 м-2).
На пластинах с ориентацией (100), вырезанных из начальной и конечной части слитков, перпендикулярно оси роста, осуществляли контроль электрофизических параметров полученных монокристаллов: концентрации и подвижности основных носителей заряда. Выявление дислокационной и дефектной структуры полученных монокристаллов антимонида галлия проводили на этих же пластинах с помощью избирательного травления в травителе состава HCl: H2O2=2:1 в течение 1 мин [Бублик В.Т., Смирнов В.М., Мильвидская А.Г. «Кристаллография» 37, 1992, №2. С.56-61]. Структурные особенности полученных монокристаллов исследовали методом оптической микроскопии. В качестве образцов для сравнения использовали крупногабаритные нелегированные монокристаллы антимонида галлия, выращенные по аналогичной технологии в кристаллографическом направлении [100] без добавления изовалентной примеси индия.
В таблицах 1 и 2 представлены электрофизические параметры и значения величины плотности дислокации полученных крупногабаритных нелегированных монокристаллов антимонида галлия без добавления индия и с добавлением индия в виде особо чистого антимонида индия.
Полученные результаты свидетельствуют о том, что значения электрофизических параметров крупногабаритных нелегированных монокристаллов антимонида галлия, выращенных в кристаллографическом направлении [100] с добавлением изовалентной электрически нейтральной примеси индия в интервале концентраций элементарного индия ((2-4)×1018 ат/см3), находятся на уровне значений этих параметров в нелегированных крупногабаритных монокристаллах антимонида галлия, выращенных без добавления индия, что является следствием электрической нейтральности введенного индия. Как показывают результаты, приведенные в таблицах 1 и 2, плотность дислокации в нелегированных монокристаллах антимонида галлия с добавлением индия существенно ниже, чем в нелегированных кристаллах без добавления изовалентной примеси индия, что свидетельствует об их более высоком структурном совершенстве.
Таким образом, заявленное изобретение позволяет:
1. Повысить структурное совершенство получаемых нелегированных монокристаллов антимонида галлия с сохранением их электрофизических параметров и геометрических размеров за счет значительного снижения величины плотности дислокации до ((4-5)×102 см-2).
2. Увеличить выход годных эпитаксиальных композиций, использующих в качестве подложки малодислокационные нелегированные монокристаллы антимонида галлия.
3. Снизить энерго-, материало- и трудозатраты процесса получения за счет улучшения совершенства структуры получаемых монокристаллов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КРУПНОГАБАРИТНЫХ МОНОКРИСТАЛЛОВ АНТИМОНИДА ИНДИЯ | 2012 |
|
RU2482228C1 |
СПОСОБ ПОЛУЧЕНИЯ КРУПНОГАБАРИТНЫХ МОНОКРИСТАЛЛОВ АНТИМОНИДА ГАЛЛИЯ | 2013 |
|
RU2528995C1 |
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ ТИПА АB | 2006 |
|
RU2327824C1 |
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ АРСЕНИДА ГАЛЛИЯ | 2001 |
|
RU2209260C2 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ, ЛЕГИРОВАННОГО СУРЬМОЙ | 2001 |
|
RU2202656C2 |
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК И СЛОЕВ НИТРИДА ГАЛЛИЯ | 2001 |
|
RU2209861C2 |
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА | 2015 |
|
RU2600381C1 |
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ АРСЕНИДА ГАЛЛИЯ | 2006 |
|
RU2308784C1 |
Способ получения антимонида галлия с большим удельным электрическим сопротивлением | 2016 |
|
RU2623832C1 |
Способ выращивания малодислокационных монокристаллов арсенида галлия | 1990 |
|
SU1730217A1 |
Изобретение относится к области получения полупроводниковых материалов, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму оптоэлектронных приборов (источников и приемников излучения на спектральный диапазон 1,3-2,5 мкм). Способ включает синтез из исходных компонентов и выращивание монокристаллов методом Чохральского в атмосфере водорода на затравку, ориентированную в кристаллографическом направлении [100], при этом к исходным компонентам добавляют изовалентную примесь индия в виде особо чистого антимонида индия (InSb) в интервале концентраций элементарного индия (2-4)×1018 ат/см3, а синтез и выращивание монокристаллов осуществляют в едином технологическом цикле. Изобретение позволяет получать крупногабаритные малодислокационные монокристаллы антимонида галлия диаметром 60-65 мм с пониженной плотностью дислокаций порядка (4-5)·102 см-2. 1 з.п. ф-лы, 1 ил., 2 табл., 1пр.
1. Способ получения монокристаллов антимонида галлия, включающий синтез из исходных компонентов (Ga и Sb) и выращивание монокристаллов методом Чохральского в атмосфере водорода на затравку, ориентированную в кристаллографическом направлении [100], отличающийся тем, что к исходным компонентам добавляют изовалентную примесь индия в виде особо чистого антимонида индия (InSb), в интервале концентраций элементарного индия (2-4)×1018 ат/см3, а синтез и выращивание монокристаллов осуществляют в едином технологическом цикле.
2. Способ по п.1, отличающийся тем, что процесс синтеза и выращивания монокристаллов антимонида галлия осуществляют в атмосфере протока особо чистого водорода.
MO P.G | |||
et al, A novel technique for Czochralski growth single crystals, “Journal of Crystal Growth”, 1993, vol.126, no.4, p.p.613-616 | |||
ŠestÁkovÁ V | |||
et al, Doping of GaSb single crystals with various elements, “Journal of Crystal Growth”, 1995, vol.146, no.1-4, p.p.87-91 | |||
ŠestÁkovÁ V | |||
et al, Doping |
Авторы
Даты
2014-11-27—Публикация
2013-07-24—Подача