СПОСОБ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА В ТЕПЛОВОЙ ТРУБЕ Российский патент 2014 года по МПК F28D15/06 

Описание патента на изобретение RU2535597C2

Изобретение относится к методам отвода тепла от компонентов радиоэлектроники с высокой мощностью тепловыделений, в частности к охлаждению с применением тепловой трубы, и может использоваться в различных областях электронной промышленности.

Наиболее близким к изобретению по достигаемому результату является тепловая труба [1, 2], состоящая из герметичного полого цилиндра, внутренняя поверхность которого выложена капиллярно-пористой структурой, насыщенной смачивающей жидкостью. Капиллярно-пористая структура может представлять собой металлическую сетку, спеченные шарики, металловолокна, стеклоткани и даже систему канавок на внутренней поверхности корпуса. Смачивающая жидкость является теплоносителем и в зависимости от уровня температуры в зоне нагрева выбираются жидкие металлы, ртуть, аммиак, вода, ацетон, спирты, фреоны и т.п.

Недостатком тепловой трубы можно считать невысокую скорость перемещения смачивающей жидкости от зоны конденсации к зоне испарения в случае применения тепловой трубы для охлаждения мощных теплонагруженных компонентов электронной аппаратуры.

Задача изобретения - улучшение теплообмена в тепловой трубе путем интенсификации перемещения хладагента по стенкам тепловой трубы.

Для решения поставленной задачи предлагается способ интенсификации теплообмена в тепловой трубе, основанный на применении в качестве хладагента внутри тепловой трубы электролитической жидкости. Согласно изобретению, состоящей в использовании в качестве хладагента внутри тепловой трубы электролитической жидкости интенсификация перемещения хладагента в капиллярах по стенкам тепловой трубы достигается пропусканием через электролит тока в магнитном поле, смещающем ионы электролита в нужном направлении.

Способ осуществляют следующим образом.

При изготовлении тепловой трубы ее внутреннюю поверхность выкладывают капиллярно-пористой структурой, которую насыщают смачивающей жидкостью. В качестве смачивающей жидкости используют электролит. Со стороны внутренней и со стороны внешней поверхности тепловой трубы для создания магнитного поля устанавливают параллельно две магнитные пластины. Полярности пластин имеют противоположные значения, например со стороны внутренней поверхности тепловой трубы - знак «-», а со стороны внешней поверхности - знак «+». По поверхности тепловой трубы в направлении, перпендикулярном плоскости магнитного поля, пропускают электрический ток.

В тепловой трубе движение жидкости по капиллярам осуществляется за счет осмотического давления. Для интенсификации процесса прохождения жидкости целесообразно использовать электролит, через который будет пропущен ток, создавая движение положительных и отрицательных ионов в разные стороны, и под действием магнитного поля возникающая сила Лоренца обеспечит смещение положительных и отрицательных ионов в одну и ту же сторону, так как приложенные разнополярные электроды вызовут движение положительных ионов в одну сторону, а отрицательных ионов - в другую сторону, а сила Лоренца по правилу «левой руки» и по правилу «правой руки» вызовет их общее смещение в одном и том же направлении. Поэтому жидкость будет более интенсивно двигаться по капиллярам в нужном направлении, усиливая теплоперенос и создавая условия для интенсификации теплообмена.

Изменением параметров электрического и магнитного поля можно регулировать процесс теплопереноса, усиливая его либо замедляя до полной остановки, таким образом, предлагаемый способ интенсификации теплопереноса в тепловой трубе позволяет сделать ее регулируемой в широком диапазоне.

На фиг.1 приведен фрагмент действия электромагнитного насоса. Здесь в результате приложения к электролитической жидкости пластины 1 «+» и пластины 2 «-» - положительные ионы - движутся в сторону отрицательной пластины, а отрицательные ионы движутся в противоположном направлении - в сторону положительной пластины. Приложенное магнитное поле (полюса «север», «юг») будет воздействовать в соответствии с правилами «левой» и «правой» руки на эти заряды таким образом, что и положительные и отрицательные ионы будут смещаться в одном направлении, создавая поток жидкости в нужном направлении.

Данный принцип реализован при создании тепловой трубы. На фиг.2 приведена схема. Здесь электродами являются наружное и внутреннее кольцо. А магнитное поле прикладывается к катушке таким образом, чтобы создать движение ионов в определенном направлении, от одного конца тепловой трубы к другому, интенсифицируя процесс перемещения жидкости, либо замедляя его до полной остановки или обратного движения. Таким образом, можно осуществить регулировку движения ионов по капиллярам, увеличивая либо замедляя его в широком диапазоне.

Предлагаемая конструкция тепловой трубы выгоднее существующих труб в том плане, что позволяет регулировать параметры самой трубы от обратной отсечки теплового движения до увеличения интенсификации работы этой трубы. В случае принудительного переноса в прямом направлении мы повышаем эффективность теплопереноса, а в случае остановки движения жидкости либо движения ее назад,мы можем создать в тепловой трубе условия, при которых появится градиент температуры. Таким образом, мы можем регулировать температуру охлаждаемого объекта в очень широких пределах с целью термостатирования данного объекта.

Литература

1. Пат.2350348 (США). Heat transfer device / R. S. Gaugler.- Опубл. 1944

2. Семена М.Г., Гершуни А.Н., Зарипов В.К. Тепловые трубы с металловолокнистыми капиллярными структурами. - К.: Вища шк. Головное изд-во, 1984 - 215 с.

Похожие патенты RU2535597C2

название год авторы номер документа
ТЕПЛОВАЯ ТРУБА С ПРИМЕНЕНИЕМ ТРУБЧАТЫХ ОПТОВОЛОКОННЫХ СТРУКТУР 2012
  • Исмаилов Тагир Абдурашидович
  • Гаджиев Хаджимурат Магомедович
  • Гаджиева Солтанат Магомедовна
  • Нежведилов Тимур Декартович
RU2524480C2
Теплопередающая стенка теплообменника и способ формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника 2021
  • Никифоров Алексей Александрович
  • Павленко Александр Николаевич
  • Куприков Михаил Юрьевич
  • Печеркин Николай Иванович
  • Катаев Андрей Иванович
  • Володин Олег Александрович
  • Миронова Ирина Борисовна
RU2793671C2
Пароэжекторная холодильная машина 1979
  • Дабрундашвили З.Ш.
  • Джугели Т.Н.
  • Тевзаде Н.У.
SU862656A1
Способ работы тепловой трубы 1977
  • Гайгалис Вигандас Альгирдо
  • Асакавичюс Ионас Пятро
  • Эва Витаутас Кристионо
SU732650A1
ТЕПЛОВАЯ ТРУБА С ИНТЕНСИФИКАЦИЕЙ ОТВОДА ГАЗА 2007
  • Исмаилов Тагир Абдурашидович
  • Аминов Гарун Ильясович
  • Аминова Ирина Юрьевна
  • Евдулов Денис Викторович
RU2343882C2
СИСТЕМА ТЕПЛООБМЕННИКА С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ 2013
  • Уено Масао
  • Сакамото Йосиаки
  • Сакаи Фумиаки
  • Судзуки Кенсаку
  • Исикава Ацумаса
RU2618775C2
Тепловая труба 1974
  • Гарченко Георгий Александрович
  • Гарченко Юрий Александрович
SU662791A1
Теплообменный аппарат 1987
  • Бортников Иван Иванович
  • Медведев Владимир Дмитриевич
  • Садовский Владимир Леонидович
  • Живилов Владимир Сергеевич
  • Козей Сергей Всеволодович
SU1493857A1
Тепловая труба 1977
  • Васильев Леонард Леонидович
  • Богданов Владимир Михайлович
SU620792A1
НЕПОЛЯРИЗУЮЩИЙСЯ ЭЛЕКТРОД СРАВНЕНИЯ 2020
  • Кулаков Игорь Геннадьевич
  • Шевченко Евгений Федорович
RU2745017C1

Иллюстрации к изобретению RU 2 535 597 C2

Реферат патента 2014 года СПОСОБ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА В ТЕПЛОВОЙ ТРУБЕ

Изобретение относится к методам отвода тепла от компонентов радиоэлектроники с высокой мощностью тепловыделений, в частности к охлаждению с применением тепловой трубы, и может использоваться в различных областях электронной промышленности. Согласно изобретению, в способе, состоящем в использовании в качестве хладагента внутри тепловой трубы электролитической жидкости, интенсификация перемещения хладагента в капиллярах по стенкам тепловой трубы достигается пропусканием через электролит тока в магнитном поле, смещающем ионы электролита в нужном направлении. Технический результат - улучшение теплообмена в тепловой трубе путем интенсификации перемещения хладагента по стенкам тепловой трубы. 2 ил.

Формула изобретения RU 2 535 597 C2

Способ интенсификации теплообмена в тепловой трубе, состоящий в использовании в качестве хладагента внутри тепловой трубы электролитической жидкости, отличающийся тем, что интенсификация перемещения в капиллярах по стенкам тепловой трубы достигается пропусканием через электролит тока в магнитном поле, смещающем ионы электролита в нужном направлении.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535597C2

Тепловая труба 1973
  • Гельфгат Юрий Моисеевич
  • Горбунов Леонид Александрович
  • Ольшанский Сергей Викторович
SU504067A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Регулируемая тепловая труба 1980
  • Бутырский Валентин Иванович
  • Макаров Валентин Сергеевич
  • Проценко Валентин Прокофьевич
  • Репин Дмитрий Ильич
SU926503A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Регулируемая тепловая труба 1987
  • Шалай Виктор Владимирович
  • Булко Александр Николаевич
  • Осипов Игорь Николаевич
  • Блук Геннадий Геннадьевич
  • Чиркова Людмила Геннадьевна
SU1508085A1
US 0003614981 A1 (SANDERS ASSOCIATES INC.) 26.10.1971
ЛЕЧЕНИЕ С ПРИМЕНЕНИЕМ БОТУЛИНИЧЕСКОГО ТОКСИНА 2004
  • Дотт Крис
  • Бэтчелор Джон
  • Бернар Д`Арбиньи Пьер
  • Шериф-Шейкх Ролан
RU2350348C2
US 6978828 B1 (SCHLUMBERGER TECHNOLOGY CORP ) 27.12.2005

RU 2 535 597 C2

Авторы

Исмаилов Тагир Абдурашидович

Гаджиев Хаджимурат Магомедович

Гаджиева Солтанат Магомедовна

Нежведилов Тимур Декартович

Даты

2014-12-20Публикация

2012-11-01Подача