ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ Российский патент 2015 года по МПК G01L19/06 

Описание патента на изобретение RU2537470C1

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем с мостовой измерительной цепью, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия повышенных виброускорений и широкого диапазона нестационарных температур.

Известна конструкция датчика давления, предназначенная для использования в условиях воздействия повышенных виброускорений и широкого диапазона нестационарных температур, содержащая чувствительный элемент, накидную гайку, внутри которой частично расположен цилиндрический корпус с элементами коммутации, кабельный ввод, кабельную перемычку и установленную на цилиндрическом корпусе глухую резьбовую втулку, на боковой поверхности которой выполнен цилиндрический патрубок с отверстием, расположенным к корпусу под острым углом, определяемым соотношением в зависимости от размеров накидной гайки [1].

Указанное решение не обладает требуемой точностью при воздействии повышенных виброускорений и широкого диапазона нестационарных температур вследствие несовершенства конструкции кабельной перемычки и невозможности оптимального ее размещения на изделии из-за невозможности ориентирования патрубка в необходимом направлении. Невозможность ориентирования патрубка вызвана необходимостью в соответствии с требованиями безопасности и надежности изделия применения при установке датчика значительного (для таких конструкций) момента затяжки, который вследствие трения элементов конструкции приводит к повороту патрубка на случайную величину. Удержание от случайного проворачивания патрубка, которое в рассматриваемой конструкции можно осуществлять только при помощи патрубка или резьбовой втулки, приводит к воздействию значительного момента кручения на резьбовую втулку относительно цилиндрического корпуса, что приводит к разрушению резьбового соединения "цилиндрический корпус - резьбовая втулка" или повреждению важнейшего элемента коммутации - контактной колодки, одновременно выполняющей функцию гермовводов.

Наиболее близким к предлагаемому решению по технической сущности (прототипом) является тонкопленочный датчик давления, содержащий чувствительный элемент, накидную гайку, внутри которой частично расположен цилиндрический корпус с элементами коммутации, кабельную перемычку и установленную на цилиндрическом корпусе резьбовую втулку, на боковой поверхности которой выполнен патрубок с отверстием, расположенным к корпусу под острым углом α, и патрубок частично или полностью выполнен в виде локального и плавного утолщения боковой стенки втулки по мере приближения к отверстию, а в отверстии патрубка в области его утолщения со стороны внутренней полости выполнен расширенный участок, в котором размещены элементы крепления кабельной перемычки, при этом цилиндрический корпус герметично соединен с одной стороны по торцу с контактной колодкой и с другой стороны с чувствительным элементом, а отверстие патрубка относительно продольной оси датчика расположено под углом α [2].

Техническое решение по прототипу также не обеспечивает необходимую точность датчика при воздействии повышенных виброускорений и широкого диапазона нестационарной температуры окружающей среды вследствие появления не скомпенсированных термоэдс, возникающих на термоэлектрических неоднородностях контакты контактной колодки - токопроводящие жилы кабельной перемычки из-за несовершенства конструкции кабельной перемычки и невозможности оптимального ее размещения на изделии из-за невозможности ориентирования патрубка в необходимом направлении. Невозможность ориентирования патрубка предопределена необходимостью (в соответствии с требованиями безопасности и надежности изделия) применения при установке датчика значительного (для таких конструкций) момента затяжки, который вследствие трения элементов конструкции приводит к повороту патрубка на случайную величину. Удержание от случайного проворачивания патрубка, которое в рассматриваемой конструкции можно осуществлять только при помощи патрубка или резьбовой втулки, приводит к воздействию значительного момента кручения на резьбовую втулку относительно цилиндрического корпуса, что приводит к разрушению резьбового соединения "цилиндрический корпус - резьбовая втулка" или повреждению важнейшего элемента коммутации - контактной колодки, одновременно выполняющей функцию гермовводов. Кроме того, предлагаемое в прототипе с целью уменьшения виброперемещений дополнительное закрепление кабельной перемычки на шестиграннике накидной гайки также недостаточно эффективно вследствие наличия значительного незакрепленного участка кабельной перемычки из-за несовпадения плоскости шестигранника с необходимым направлением кабельной перемычки вследствие случайной ориентации накидной гайки при завинчивании.

Целью предлагаемого изобретения является уменьшение погрешности датчика давления при воздействии повышенных виброускорений и широкого диапазона нестационарных температур за счет усовершенствования конструкции кабельной перемычки, возможности ориентирования патрубка в необходимом направлении и оптимального размещения кабельной перемычки.

Поставленная цель достигается тем, что в тензорезисторном датчике давления на основе тонкопленочной нано- и микроэлектромеханической системы, содержащем чувствительный элемент, накидную гайку, внутри которой частично расположен цилиндрический корпус с элементами коммутации, кабельную перемычку и установленную на цилиндрическом корпусе резьбовую втулку, на боковой поверхности которой выполнен патрубок с отверстием, расположенным к корпусу под острым углом α, и патрубок частично или полностью выполнен в виде локального и плавного утолщения боковой стенки втулки по мере приближения к отверстию, а в отверстии патрубка в области его утолщения со стороны внутренней полости выполнен расширенный участок, в котором размещены элементы крепления кабельной перемычки, при этом цилиндрический корпус герметично соединен с одной стороны по торцу с контактной колодкой и с другой стороны с чувствительным элементом, в соответствии с заявляемым изобретением, кабельная перемычка выполнена в виде четырех скрученных с шагом скрутки, не превышающим длины кабельной перемычки, электрически изолированных с помощью фторопласта или полиимида медных посеребренных токопроводящих жил с общим экраном в виде оплетки из медных посеребренных проволок, защищенной фторопластовой или полиимидно-фторопластовой пленкой, а на боковой поверхности цилиндрического корпуса между торцами накидной гайки и резьбовой втулки выполнены шесть равномерно размещенных по боковой поверхности цилиндрического корпуса одинаковых по размерам и конфигурации пазов, образующих три пары пазов, каждая из которых симметрична относительно продольной оси цилиндрического корпуса и перпендикулярна радиусам цилиндрического корпуса, проходящим через продольную ось цилиндрического корпуса и центры пазов, при этом боковые поверхности каждого паза параллельны друг другу и симметричны плоскости, проходящей перпендикулярно продольной оси цилиндрического корпуса через середину расстояния между торцами накидной гайки и резьбовой втулки, причем ширина пазов равна расстоянию между торцами накидной гайки и резьбовой втулки, а длина пазов выполнена в соответствии с соотношением

где K - коэффициент запаса;

Mmax - максимальный момент, необходимый для ориентации датчика при закручивании накидной гайки;

D - наружный диаметр цилиндрического корпуса;

H - ширина пазов;

σт - предел текучести материала цилиндрического корпуса.

На фиг.1 изображен предлагаемый датчик давления, на фиг.2 - поперечное сечение цилиндрического корпуса в области пазов. Стрелкой A на фиг.1 показано возможное направление нестационарной температуры окружающей среды, на выноске 2 - термоэлектрическая неоднородность контакт контактной колодки - токопроводящая жила кабельной перемычки.

Датчик давления содержит чувствительный элемент 1 в виде тонкопленочной нано- и микроэлектромеханической системы, накидную гайку 2, внутри которой частично расположен цилиндрический корпус 3 с контактной колодкой 4 и другими элементами коммутации, кабельную перемычку 5 и установленную на цилиндрическом корпусе 3 резьбовую втулку 6, на боковой поверхности которой выполнен патрубок 7 с отверстием 8, расположенным к корпусу 3 под острым углом α. Патрубок 7 частично или полностью выполнен в виде локального и плавного утолщения боковой стенки втулки 6 по мере приближения к отверстию 8, а в отверстии 8 утолщения со стороны внутренней полости 9 выполнен расширенный участок 10, в котором размещены элементы крепления 11 кабельной перемычки 5. Цилиндрический корпус 3 герметично соединен с одной стороны по торцу с контактной колодкой 4, а с другой стороны с чувствительным элементом 1. Таким образом, цилиндрический корпус 3 обеспечивает герметичность внутренней полости датчика. Кабельная перемычка 5 выполнена в виде четырех скрученных с шагом скрутки, не превышающим длины кабельной перемычки, электрически изолированных с помощью фторопласта или полиимида медных посеребренных токопроводящих жил с общим экраном 12 в виде оплетки из медных посеребренных проволок, защищенной фторопластовой или полиимидно-фторопластовой пленкой 13. На боковой поверхности цилиндрического корпуса 3 между торцом 14 накидной гайки 2 и торцом 15 резьбовой втулки 6 выполнены шесть равномерно размещенных по боковой поверхности цилиндрического корпуса 3 одинаковых по размерам и конфигурации пазов 16, образующих три пары пазов, каждая из которых симметрична относительно продольной оси 17 цилиндрического корпуса 3 и перпендикулярна радиусам цилиндрического корпуса 3, проходящим через продольную ось 17 цилиндрического корпуса 3 и центры пазов 16. Боковые поверхности каждого паза 16 параллельны друг другу и симметричны плоскости, проходящей перпендикулярно продольной оси 17 цилиндрического корпуса 3 через середину расстояния между торцами 14 и 15 накидной гайки 2 и резьбовой втулки 6, причем ширина пазов 16 равна расстоянию между торцами 14 и 15 накидной гайки 2 и резьбовой втулки 6, а длина пазов 16 выполнена в соответствии с заявляемым соотношением.

Установление причинно-следственной связи заявляемых признаков и достигаемого технического эффекта проведем следующим образом. В связи с выполнением кабельной перемычки в виде четырех токопроводящих жил обеспечивается необходимое симметрирование электрической цепи, необходимое для уменьшения величины не скомпенсированной термоэдс термоэлектрических неоднородностей контакты контактной колодки - токопроводящие жилы кабельной перемычки, а следовательно, и погрешности, возникающей при воздействии виброускорений и нестационарных температур. Любое другое количество токопроводящих жил приведет к возрастанию не скомпенсированной термоэдс или снижению надежности вследствие избыточного количества жил. Скрученность жил уменьшает различия температур токопроводящих жил кабельной перемычки и термоэлектрических неоднородностей контакты контактной колодки - токопроводящие жилы кабельной перемычки вследствие усреднения температур, возникающих в результате воздействия виброускорений и нестационарной температуры, как окружающей среды, так и возникающей в результате воздействия виброускорений.

При этом для повышения эффекта выравнивания температур шаг скрутки выполнен не превышающим длины кабельной перемычки, так как в этом случае, например при воздействии равномерного нестационарного теплового потока, направленного перпендикулярно кабельной перемычке, температуры жил практически одинаковы вследствие того, что каждая жила подвергается практически одинаковым температурным воздействиям. В связи с использованием фторопласта или полиимида для электрической изоляции обеспечивается дальнейшее уменьшение разности температур токопроводящих жил, возникающих при воздействии виброускорений и нестационарных температур, за счет повышения теплопроводности изоляции вследствие возможности уменьшения ее толщины. Эта возможность связана с уникальными электроизоляционными, термическими, механическими свойствами фторопласта и полиимида. Например, электрическая прочность фторопласта и полиимида достигает 100 кВ/мм, удельное объемное электрическое сопротивление - 1017 Ом· см, коэффициент теплопроводности λ=0,2 Вт/(м·К) - что при типичном напряжении питания датчика не более 10 В и необходимом сопротивлении изоляции между токопроводящими жилами 108 Ом позволяет выполнять толщину фторопласта или полиимида минимальной толщины, например 10 мкм. В этом случае термическое сопротивление изоляции, определяемое в упрощенном виде как отношение толщины материала к его коэффициенту теплопроводности, становится небольшим и приводит к меньшей разнице температур токопроводящих жил.

Такое решение позволяет изготавливать кабельную перемычку с 4 токоведущими жилами диаметром 0,35 мм с уменьшенными массой, наружным диаметром и практически однородными термическими характеристиками, что увеличивает вибростойкость вследствие уменьшения массы и уменьшает погрешность при воздействии нестационарной температуры окружающей среды. Медные посеребренные токопроводящие жилы вследствие максимальной теплопроводности в сочетании со скрученностью жил и экраном в виде оплетки из медных посеребренных проволок, защищенной фторопластовой или полиимидно-фторопластовой пленкой, обеспечивают дальнейшее выравнивание температур токопроводящих жил, а следовательно, температур термоэлектрических неоднородностей и уменьшение погрешности. Кроме того, серебрение медных токопроводящих жил и проволок экранов предотвращает их окисление от воздействия нестационарных температур и виброускорений, что повышает вибростойкость датчика при длительном воздействии виброускорений и повышает временную стабильность.

Выполнение пазов на боковой поверхности цилиндрического корпуса между торцами накидной гайки и резьбовой втулки обеспечивает воздействие удерживающего момента непосредственно на цилиндрический корпус, а следовательно, отсутствие воздействия этого момента на резьбовое соединение "цилиндрический корпус - резьбовая втулка" и исключает повреждение резьбового соединения и контактной колодки. Выполнение шести равномерно размещенных по боковой поверхности цилиндрического корпуса одинаковых по размерам и конфигурации пазов, образующих три пары пазов, каждая из которых симметрична относительно продольной оси цилиндрического корпуса и перпендикулярна радиусам цилиндрического корпуса, проходящим через продольную ось цилиндрического корпуса и центры пазов, позволяет проводить ориентирование при любом необходимом положении патрубка за счет свободного доступа ключа для ориентирования к одной из пар пазов при любом положении патрубка. При этом дополнительно обеспечивается симметричность распределения напряжений и тепловых потоков в поперечном сечении цилиндрического корпуса при воздействии повышенных виброускорений и широкого диапазона нестационарных температур.

Для этих же целей служит выполнение боковых поверхностей каждого паза параллельными друг другу и симметричными плоскости, проходящей перпендикулярно продольной оси цилиндрического корпуса через середину расстояния между торцами накидной гайки и резьбовой втулки. Кроме того, такое конструктивное выполнение является оптимальным для датчиков рассматриваемого исполнения (цилиндрический корпус герметично соединен с одной стороны по торцу с контактной колодкой и с другой стороны с чувствительным элементом), в связи с равной удаленностью места приложения момента удержания при ориентировании, как от контактной колодки так и от чувствительного элемента.

Выполнение ширины пазов равной расстоянию между торцами накидной гайки и резьбовой втулки, а длины пазов - в соответствии с заявляемым соотношением обеспечивает, с одной стороны, необходимую площадь поверхности контактирования ключа для ориентирования, а с другой стороны, позволяет не увеличивать длину цилиндрического корпуса, а следовательно, и ухудшать погрешность при воздействии повышенных виброускорений и широкого диапазона нестационарных температур. Для обоснование заявляемого соотношения обратимся к фиг.2. Определим максимальное усилие, воздействующее на цилиндрический корпус при воздействии максимального момента, необходимого для ориентации датчика при закручивании накидной гайки в виде

F max = M max r 1 , ( 2 )

где r - радиус цилиндрического корпуса.

Тогда, учитывая, что r=0,5D, максимальные напряжения, возникающие на поверхности пазов при воздействии максимального момента, необходимого для ориентации датчика при закручивании накидной гайки, будут равны

σ max = M max ( 0 , 5 D L H ) 1 . ( 3 )

Учитывая, что для работы без пластических деформаций необходимо, чтобы максимальные деформации при воздействии максимального момента, необходимого для ориентации датчика при закручивании накидной гайки, не превышали предела текучести материала цилиндрического корпуса с коэффициентом запаса (σmax=K-1σт), из выражения (3) получим заявляемое соотношение. Физический смысл предложенного соотношения заключается в уменьшении возможного негативного влияния пазов на виброустойчивость датчика за счет уменьшения длины и соответственно глубины пазов.

Датчик работает следующим образом.

Под воздействием измеряемого давления в мембране 18 чувствительного элемента 1 возникают поверхностные деформации, которые воспринимаются и преобразуются в относительные изменения сопротивлений тонкопленочными тензорезисторами, размещенными на мембране 18. Токопроводящие жилы кабельной перемычки 5 служат для подачи на тензорезисторы напряжения питания и съема с них выходного сигнала через контакты контактной колодки 4. При воздействии виброускорений, нестационарной температуры окружающей среды, нестационарной температуры измеряемой среды на датчик в процессе эксплуатации в составе изделия, все элементы датчика также подвергнутся этим воздействиям. За счет выполнения конструкции кабельной перемычки 5 и оптимального ее размещения в соответствии с заявляемыми решениями уменьшаются виброперемещения кабельной перемычки 5, уменьшаются температуры и разницы температур термоэлектрических неоднородностей: контакты контактной колодки 4 -токопроводящие жилы кабельной перемычки 5, а следовательно, уменьшается погрешность датчика от воздействия виброускорений, нестационарной температуры окружающей среды, нестационарной температуры измеряемой среды, достигается повышение вибростойкости и временной стабильности датчика.

Автономные испытания макетных образцов датчиков, изготовленных в соответствии с заявляемыми решениями, показали, что их погрешность при воздействии повышенных виброускорений 10000 м/с2 не превышает 1,5·10-6 с-2/м, при воздействии нестационарной температуры окружающей среды от минус 196°C до 25±°C не превышает 4,1·10-3 °C-1, при воздействии нестационарной температуры измеряемой среды от 25±°C до минус 196°C не превышает 3,6·10-3 °C-1, масса датчика составила 85 г, время готовности датчика после подачи напряжения питания 10 с.

Автономные испытания датчиков, изготовленных в соответствии с решениями по прототипу, показали, что их погрешность при воздействии повышенных виброускорений 10000 м/с2 не превышает 5·10-6 с-2/м, при воздействии нестационарной температуры окружающей среды от минус 196°C до 25±°C не превышает 14·10-3 °C-1, при воздействии нестационарной температуры измеряемой среды от 25±°C до минус 196°C не превышает 14·10-3 °C-1, масса датчика 100 г, время готовности датчика после подачи напряжения питания 30 с.

Таким образом, техническим результатом предлагаемого изобретения является уменьшение погрешности датчика давления при воздействии повышенных виброускорений и широкого диапазона нестационарных температур измеряемой и окружающей среды вследствие уменьшения вызванных этими воздействующими факторами различия температур термоэлектрических неоднородностей: контакты контактной колодки - токопроводящие жилы кабельной перемычки за счет усовершенствования конструкции кабельной перемычки, возможности ориентирования патрубка в необходимом направлении и оптимального размещения кабельной перемычки.

Кроме того, преимуществом заявляемого решения является уменьшение времени готовности после подачи напряжения питания и повышение временной стабильности датчика.

Источники информации

1. Патент РФ №2041453 G01L 19/06. Бюл. №22 от 09.08.1995 г.

2. Патент РФ №2397462 G01L 19/06. Бюл. №23 от 20.08.2010 г.

Похожие патенты RU2537470C1

название год авторы номер документа
ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ 2012
  • Белозубов Евгений Михайлович
  • Дмитриенко Алексей Геннадиевич
  • Белозубова Нина Евгеньевна
RU2517798C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 2016
  • Белозубов Евгений Михайлович
  • Козлова Юлия Александровна
RU2628733C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 2009
  • Мокров Евгений Алексеевич
  • Белозубов Евгений Михайлович
  • Блинов Александр Вячеславович
  • Исаков Сергей Алексеевич
  • Козлова Юлия Александровна
  • Тихомиров Дмитрий Вячеславович
RU2397462C1
ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
RU2031383C1
ДАТЧИК ДАВЛЕНИЯ 1986
  • Белозубов Е.М.
  • Демченко О.И.
  • Бещеков В.Г.
RU2041453C1
ДАТЧИК ДАВЛЕНИЯ 1986
  • Белозубов Е.М.
  • Косогоров В.М.
  • Ульянов В.В.
RU2041451C1
ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
  • Демченко О.И.
RU2041454C1
ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ 1985
  • Белозубов Е.М.
  • Любомиров А.В.
  • Новосельцева О.Б.
RU2043609C1
Датчик давления 1990
  • Демченко Олег Игнатьевич
  • Панкусов Николай Алексеевич
  • Педоренко Николай Павлович
  • Белозубов Евгений Михайлович
  • Конюшковер Роман Семенович
  • Ходинов Виталий Викторович
SU1820247A1
ДАТЧИК ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1988
  • Белозубов Е.М.
RU2032156C1

Иллюстрации к изобретению RU 2 537 470 C1

Реферат патента 2015 года ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ

Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Техническим результатом изобретения является уменьшение погрешности датчика давления при воздействии повышенных виброускорений и широкого диапазона нестационарных температур измеряемой и окружающей среды, уменьшение времени готовности после подачи напряжения питания и повышение временной стабильности датчика. Кабельная перемычка датчика давления выполнена в виде четырех скрученных электрически изолированных с помощью фторопласта или полиимида медных посеребренных токопроводящих жил с общим экраном. На боковой поверхности цилиндрического корпуса между торцом накидной гайки и торцом резьбовой втулки выполнены шесть одинаковых по размерам и конфигурации пазов, образующих три пары пазов. Боковые поверхности каждого паза параллельны друг другу и симметричны плоскости, проходящей перпендикулярно продольной оси цилиндрического корпуса через середину расстояния между торцами накидной гайки и резьбовой втулки. Ширина пазов равна расстоянию между торцами накидной гайки и резьбовой втулки, а длина пазов выполнена в соответствии с определенным соотношением. 2 ил.

Формула изобретения RU 2 537 470 C1

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы, содержащий чувствительный элемент, накидную гайку, внутри которой частично расположен цилиндрический корпус с элементами коммутации, кабельную перемычку и установленную на цилиндрическом корпусе резьбовую втулку, на боковой поверхности которой выполнен патрубок с отверстием, расположенным к корпусу под острым углом α, и патрубок частично или полностью выполнен в виде локального и плавного утолщения боковой стенки втулки по мере приближения к отверстию, а в отверстии патрубка в области его утолщения со стороны внутренней полости выполнен расширенный участок, в котором размещены элементы крепления кабельной перемычки, при этом цилиндрический корпус герметично соединен с одной стороны по торцу с контактной колодкой и с другой стороны с чувствительным элементом, отличающийся тем, что кабельная перемычка выполнена в виде четырех скрученных с шагом скрутки, не превышающим длины кабельной перемычки, электрически изолированных с помощью фторопласта или полиимида медных посеребренных токопроводящих жил с общим экраном в виде оплетки из медных посеребренных проволок, защищенной фторопластовой или полиимидно-фторопластовой пленкой, а на боковой поверхности цилиндрического корпуса между торцами накидной гайки и резьбовой втулки выполнены шесть равномерно размещенных по боковой поверхности цилиндрического корпуса одинаковых по размерам и конфигурации пазов, образующих три пары пазов, каждая из которых симметрична относительно продольной оси цилиндрического корпуса и перпендикулярна радиусам цилиндрического корпуса, проходящим через продольную ось цилиндрического корпуса и центры пазов, при этом боковые поверхности каждого паза параллельны друг другу и симметричны плоскости, проходящей перпендикулярно продольной оси цилиндрического корпуса через середину расстояния между торцами накидной гайки и резьбовой втулки, причем ширина пазов равна расстоянию между торцами накидной гайки и резьбовой втулки, а длина пазов выполнена в соответствии с соотношением
L=0,5KMmax(DHσт)-1,
где K - коэффициент запаса;
Mmax - максимальный момент, необходимый для ориентации датчика при закручивании накидной гайки;
D - наружный диаметр цилиндрического корпуса;
H - ширина пазов;
σт - предел текучести материала цилиндрического корпуса.

Документы, цитированные в отчете о поиске Патент 2015 года RU2537470C1

ДАТЧИК ДАВЛЕНИЯ 1986
  • Белозубов Е.М.
  • Демченко О.И.
  • Бещеков В.Г.
RU2041453C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 2009
  • Мокров Евгений Алексеевич
  • Белозубов Евгений Михайлович
  • Блинов Александр Вячеславович
  • Исаков Сергей Алексеевич
  • Козлова Юлия Александровна
  • Тихомиров Дмитрий Вячеславович
RU2397462C1
ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ 2009
  • Белозубов Евгений Михайлович
  • Белозубова Нина Евгеньевна
  • Васильев Валерий Анатольевич
  • Васильева Светлана Александровна
RU2397461C1
Способ получения смазочной композиции 1986
  • Суслов Петр Григорьевич
  • Радин Юрий Алексеевич
  • Аксенов Георгий Константинович
  • Дубцов Сергей Герасимович
SU1384612A1

RU 2 537 470 C1

Авторы

Белозубов Евгений Михайлович

Дмитриенко Алексей Геннадиевич

Белозубова Нина Евгеньевна

Даты

2015-01-10Публикация

2013-08-15Подача