Предлагаемое изобретение относится к области органической химии, конкретно к области получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1):
(5Z,9Z)-5,9-гексадекадиеновая кислота формулы (1) перспективна в качестве лекарственного препарата, обладающего противоопухолевым, противовирусным и антибактериальным действием [N.M. Carballeira. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents // Prog Lipid Res, 47, (2008), 50-61; D'Arpa, P., Machlin, P.S., Ratrie, H., III, Rothfield, N.F., Cleveland, D.W., Earnshaw, W.C. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67. 7-kDa carboxyl-terminal fragment // Proc. Nat. Acad. Sci., 85, (1988), 2543-2547]. (5Z,9Z)-5,9-гексадекадиеновая кислота обладает ингибирующим действием на человеческую топоизомеразу I [N.M. Carballeira, J.E. Betancourt, Е.А. Orellano, F.A. Gonzalez. Total syntheses and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of Human topoisomerase I // J. Nat. Prod, 65, (2002), 1715-1718].
Известен [N.M. Carballeira, A. Emiliano, A. Guzman. Facile syntheses for (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid through a common synthetic route // Chem. Phys. Lipids, 100, (1999), 33-40] четырехстадийный способ синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) и (5Е,9Z)-5,9-гексадекадиеновой кислоты формулы (3) в соотношении, равном 9:1, исходя из 2-(2-бромоэтил)-1,3-диоксолана (2) с выходом 9-12% по схеме:
Предлагаемый способ не позволяет получать индивидуальную (5Z,9Z)-5,9-гексадекадиеновую кислоту формулы (1).
Известен [N.M. Carballeira, J.E. Betancourt, Е.А. Orellano, F.A. Gonzalez. Total syntheses and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of Human topoisomerase I // J. Nat. Prod, 65, (2002), 1715-1718.] шести стадийный способ синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) исходя из 1,5-гексадиина (4) с выходом 8% по схеме:
Предлагается новый способ стереоселективного синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) исходя из тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6).
Сущность способа заключается во взаимодействии тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6) с реактивом Гриньяра RMgX (R=Me, Et, Pr, Bu, Oct; X=Cl, Br, I) в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, взятых в мольном соотношении (5):(6):RMgX:Mg:Cp2TiCl2=10:12:(30-50):32:(0.4-0.6), предпочтительно 10:12:40:32:0.5. Реакцию проводят в атмосфере аргона при температуре 0-35°C, предпочтительно 20°C и атмосферном давлении. Время реакции 6-10 часов, предпочтительно 8 часов. В качестве растворителя необходимо использовать диэтиловый эфир. После обработки реакционной массы 5% водным раствором HCl получают 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7). Полученный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2Н-пиран формулы (7) окисляют реагентом Джонса с получением целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) с выходом 50-70% на исходный пиран (7). Реакция проходит по схеме:
Проведение реакции в присутствии катализатора Cp2TiCl2 больше 6 мол.% по отношению к O-содержащему 1,2-диену формулы (5) не приводит к существенному увеличению выхода целевых продуктов (1). Использование в реакции катализатора Cp2ZrCl2 менее 4 мол.% снижает выход 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), что связано с уменьшением каталитически активных центров в реакционной массе. Опыты проводили при температуре 20°C. При более высокой температуре (например, 35°C) увеличиваются энергозатраты и содержание продуктов уплотнения, при меньшей температуре (например, 0°C) снижается скорость реакции.
Изменение соотношения исходных реагентов в сторону увеличения содержания RMgX (R=алкил, X=Cl, Br, I) по отношению к кислородсодержащему 1,2-диену (5) не приводит к значительному повышению выхода целевых продуктов (1). Снижение количества RMgX приводит к уменьшению выхода 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), что приводит к уменьшению выхода целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты (1).
Существенные отличия предлагаемого способа.
Предлагаемый способ базируется на использовании в качестве исходных реагентов тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6), доступных реактивов Гриньяра общей формулы RMgX (R=алкил, X=Cl, Br, I) и реактива Джонса, а также катализатора титаноцендихлорид (Cp2TiCl2). В известном способе (5Z,9Z)-5,9-гексадекадиеновую кислоту получают из 1,5-гексадиина, с применением на двух стадиях крайне пирофорного н-бутиллития. Реакция проводится в шесть стадий, общий выход стереоизомерных кислот составляет (8%).
Предлагаемый способ обладает следующими преимуществами.
Способ позволяет получать с высокой стереоселективностью индивидуальную (5Z,9Z)-5,9-гексадекадиеновую кислоту (1) в две препаративные стадии с высоким выходом. Без применения пирофорного н-бутиллития и низких температур (-78°C) в течение длительного времени.
Способ поясняется следующими примерами.
ПРИМЕР 1. В стеклянный реактор в атмосфере сухого аргона (~0°C) при перемешивании загружали 1.82 г (10 ммоль) тетрагидропиранового эфира 5,6-гептадиен-1-ола формулы (5), 1.49 г (12 ммоль) 1,2-нонадиена (6), 20 мл (40 ммоль) EtMgBr (2M раствор в Et2O), 0.77 г (32 ммоль) Mg (порошок) и 0.124 г (0.5 ммоль) Cp2TiCl2. Температуру реакционной смеси повышали до 20-22°C, перемешивали 8 ч. Реакционную массу обрабатывали 5% раствором HCl в H2O. Продукты реакции экстрагировали эфиром, экстракты сушили над MgSO4, растворитель упаривали, остаток хроматографировали на колонке (SiO2, элюент - петролейный эфир - EtOAc (50:1)). Получали индивидуальный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7). Полученный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7) окисляют реагентом Джонса (CrO3-H2SO4) с получением целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) с выходом 69% на исходный пиран (7).
Спектральные характеристики (5Z,9Z)-5,9-гексадекадиеновой кислоты (1):
Спектр ЯМР 1H, δ, м.д.: 0.90 (т, 3H, CH 3, J=12 Гц), 1.30-1.32 (м, 8H, CH 2), 1.70 (кв, 2Н, CH 2, J=7.6 Гц), 2.01-2.14 (м, 8H, CH 2CH=), 2.37 (т, 2H, CH 2-COOH, J=7.2 Гц), 5.33-5.46 (м, 4H, CH=CH);
Спектр ЯМР 13C, δ, м.д.: 14.08 C(16), 22.65 C(15), 24.63 C(3), 26.51 C(11), 27.27 C(7,8), 27.40 C(4), 28.99 C(12), 29.69 C(13), 31.78 C(14), 33.60 C(2), 128.63 C(10), 128.92 C(9), 130.53 C(5), 130.57 C(6), 180.27 C(1).
Другие примеры, подтверждающие способ, приведены в таблице 1.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ (5Z,9Z)-5,9-ДОКОЗАДИЕНОВОЙ КИСЛОТЫ, ПРОЯВЛЯЮЩЕЙ ИНГИБИРУЮЩЕЕ ДЕЙСТВИЕ НА ЧЕЛОВЕЧЕСКУЮ ТОПОИЗОМЕРАЗУ I | 2013 |
|
RU2541795C1 |
СПОСОБ ПОЛУЧЕНИЯ (5Z,9Z)-5,9-ЭЙКОЗАДИЕНОВОЙ КИСЛОТЫ, ПРОЯВЛЯЮЩЕЙ ИНГИБИРУЮЩЕЕ ДЕЙСТВИЕ НА ЧЕЛОВЕЧЕСКУЮ ТОПОИЗОМЕРАЗУ I | 2013 |
|
RU2551281C2 |
Способ получения гибридных соединений на основе (5Z,9Z)-алка-5,9-диеновых кислот и монокарбонильных производных куркуминоидов | 2022 |
|
RU2807922C1 |
Способ получения ионных соединений на основе (5Z,9Z)-алка-5,9-диеновых кислот и холина | 2022 |
|
RU2808471C1 |
СПОСОБ ПОЛУЧЕНИЯ 2,3-ДИАЛКИЛ-1,4-ДИЦИКЛОПРОПИЛ-1,4-БУТАНДИОНОВ | 2014 |
|
RU2565789C1 |
СИММЕТРИЧНЫЕ ЦИАНИНОВЫЕ КРАСИТЕЛИ С ТЕРМИНАЛЬНЫМИ АЗОТСОДЕРЖАЩИМИ ГРУППАМИ В N-ЗАМЕСТИТЕЛЯХ ГЕТЕРОЦИКЛИЧЕСКИХ ОСТАТКОВ В КАЧЕСТВЕ ЛЮМИНОФОРОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2011 |
|
RU2472822C1 |
СПОСОБ ПОЛУЧЕНИЯ N-ЦИКЛОГЕКСИЛЗАМЕЩЕННЫХ 1,5,3-ДИТИАЗЕПАНОВ | 2014 |
|
RU2574074C1 |
НАНОКОМПОЗИТ С АКТИВНЫМ ЛИГАНДОМ, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ АДРЕСНОЙ ИНАКТИВАЦИИ ВИРУСА ГРИППА ВНУТРИ КЛЕТКИ | 2012 |
|
RU2496878C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНАТОВ 1-ФТОР(ХЛОР)-3-АЛКИЛ(АРИЛ)БОРОЛАНОВ | 2013 |
|
RU2532925C2 |
СПОСОБ ПОЛУЧЕНИЯ 2,3-ДИАЛКИЛ-1-ФЕНИЛ(АЛКИЛ)ЗАМЕЩЕННЫХ ФОСФОЛ-2-ЕНОВ | 2014 |
|
RU2555845C1 |
Изобретение относится к области органической химии, конкретно к области получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1), проявляющей ингибирующее действие на человеческую топоизомеразу I. (5Z,9Z)-5,9-гексадекадиеновая кислота перспективна в качестве лекарственного препарата, обладающего противоопухолевым, противовирусным и антибактериальным действием. Сущность способа заключается во взаимодействии тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6) с реактивом Гриньяра RMgX (R = Me, Et, Pr, Bu, Oct; X = Cl, Br, I) в диэтиловом эфире в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, при мольном соотношении (5):(6): RMgX : Mg : Cp2TiCl2 = 10:12:30-50:32:0,4-0,6), в атмосфере аргона при температуре 0-35°C и атмосферном давлении за 6-10 ч. После чего реакционную массу обрабатывают 5% водным раствором HCl с получением 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), который окисляют реагентом Джонса. Способ позволяет получать индивидуальное соединение формулы (1) в две препаративные стадии с высоким выходом. 15 пр., 1 табл.
Способ получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1):
отличающийся тем, что тетрагидропирановый эфир 5,6-гептадиен-1-ола (5) и 1,2-нонадиен (6) взаимодействуют с реактивом Гриньяра RMgX (R = Me, Et, Pr, Bu, Oct; X = Cl, Br, I) в диэтиловом эфире в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, при мольном соотношении (5):(6): RMgX : Mg : Cp2TiCl2 = 10:12:30-50:32:0,4-0,6), в атмосфере аргона при температуре 0-35°C и атмосферном давлении за 6-10 ч, после чего реакционную массу обрабатывают 5% водным раствором HCl с получением 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), который окисляют реагентом Джонса.
Carballeira, Nestor M | |||
et al | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Приспособление для варки пищи на самоваре | 1918 |
|
SU1715A1 |
Carballeira, N | |||
M | |||
et al | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Авторы
Даты
2015-01-10—Публикация
2013-08-06—Подача