СПОСОБ ПОЛУЧЕНИЯ МОЧЕВИНЫ ИЗ ОТХОДОВ ЛЮБОГО СОСТАВА Российский патент 2015 года по МПК C07C273/04 

Описание патента на изобретение RU2538980C1

Изобретение относится к способу получения мочевины в качестве обогащенного азотом синтетического удобрения из отходов любого состава, предпочтительно из бытовых отходов. Компоненты органических отходов сначала превращают в газ в высокотемпературном реакторе в присутствии кислорода (O2), получаемого в криогенной установке для разделения воздуха. В результате получают синтез-газ, который преимущественно включает моноксид углерода (CO), водород (H2) и диоксид углерода (CO2). Моноксид углерода (CO), содержащийся в синтез-газе, впоследствии преобразуют при помощи пара в водород (H2) и диоксид углерода (CO2). Затем водород отделяют и используют для синтеза аммиака совместно с элементарным азотом (N2), который образуется в качестве побочного продукта при криогенном разделении воздуха. На последней стадии способа получают мочевину (CO(NH2)2) из аммиака (NH3) и другого компонента синтез-газа, диоксида углерода (CO2).

Население мира возросло с 3 миллиардов, насчитывающихся в 1960 году, до более 7 миллиардов, насчитывающихся в 2011 году. Непропорционально высокий рост мирового населения также следует ожидать в следующие несколько десятилетий, причем преобладающая доля роста населения в настоящее время приходится на развивающиеся или менее развитые и бедные страны мира. Поскольку площадь для сельскохозяйственного использования ограничена и поскольку дополнительные пригодные для использования площади могут быть созданы только в небольшом количестве, обеспечение пищей мирового населения представляет постоянно растущую проблему. Если станет возможно значительно увеличить удельный выход продукта на доступных, пригодных к использованию площадях, появится реальный шанс также обеспечить пищей мировое население в будущем. Возможно увеличение удельного выхода продукта на доступных, пригодных к использованию площадях посредством увеличения использования удобрений.

Мочевина с содержанием азота 46,62% является наиболее важным азотным удобрением в мире. Мочевину получают в крупных промышленных масштабах из природного газа. Для этой цели используют большие химические установки, которые обеспечивают получение мочевины из природного газа, воздуха и воды в ходе технологических стадий получения водорода, получения аммиака и синтеза мочевины.

Приблизительно 130 миллионов тонн (т) мочевины было получено во всем мире в 2009 году. Стоимость мочевины возросла приблизительно на 80% относительно 350 евро за тонну за последние три года. Увеличение стоимости природного газа и увеличения потребности в мочевине приведут к тому, что стоимость мочевины будет также несоразмерно увеличиваться в будущем.

Чтобы удовлетворить возрастающие потребности в мочевине в качестве синтетического удобрения, содержащего азот, необходимо найти средства и способы для значительного ежегодного увеличения производства мочевины.

Количество отходов также несоразмерно возрастает с ростом населения и увеличением благосостояния, и поиск более экологически приемлемого решения проблем, связанных с отходами, приобретает все большее значение.

Была предпринята попытка экологически безопасного решения проблем, связанных с отходами, путем использования технологии термической утилизации отходов. «Термоселективный способ» занимает первостепенное положение среди таких термических способов. В «термоселективном способе» отходы самого различного состава и консистенции превращают в газ в присутствии чистого кислорода в высокотемпературном реакторе при температуре до 2000°C. В данном способе получают синтез-газ, который главным образом включает молекулярный водород (H2), моноксид углерода (CO) и диоксид углерода (CO2).

Кислород, используемый для газификации компонентов органических отходов, получают посредством процесса криогенного разделения воздуха, известного из уровня техники. В данном процессе в качестве побочного продукта получают элементарный азот, который раньше сбрасывали в атмосферу. «Термоселективный способ» описан в EP 0790291 B1 и EP 0726307 B1.

Целью настоящего изобретения является получение мочевины экономичным способом из недорогих продуктов и побочных продуктов, образующихся при газификации отходов в соответствии с «термоселективным способом», без газообразных выбросов, таких как загрязняющий воздух CO2.

Указанной цели достигают с помощью способа в соответствии с изобретением, как это определено в формуле изобретения.

Способ в соответствии с изобретением включает следующие технологические стадии.

На первой стадии получают синтез-газ, главным образом включающий моноксид углерода (CO), диоксид углерода (CO2) и водород (H2), посредством высокотемпературной газификации отходов в присутствии чистого кислорода в соответствии с «термоселективным способом». Здесь важно, что требуемый кислород получают путем процесса криогенного разделения воздуха. В данном процессе элементарный азот образуется в качестве побочного продукта.

На второй стадии моноксид углерода (CO), содержащийся в синтез-газе, преобразуют в диоксид углерода (CO2) и водород (H2) при помощи пара (H2O). На данной технологической стадии предпочтительно используют пар, который образуется при газификации отходов в высокотемпературном реакторе.

После отделения водорода (H2) от диоксида углерода (CO2), водород (H2) совместно с азотом (N2), который образуется в качестве побочного продукта при разделении воздуха, преобразуют в аммиак (NH3).

На заключительной стадии получают мочевину (CO(NH2)2) из аммиака (NH3) и диоксида углерода (CO2) из синтез-газа.

Способ в соответствии с изобретением имеет следующие основные преимущества:

- отходы самого различного состава полностью преобразуют в полезные продукты посредством газификации в присутствии кислорода согласно «термоселективному способу» без загрязнения окружающей среды, тогда как во всех других известных термических способах окружающую среду загрязняют сильно токсичными остаточными веществами, которые необходимо устранять, и газообразными выбросами, такими как CO2;

- элементарный азот, который образуется в качестве побочного продукта при разделении воздуха, используют совместно с водородом, содержащимся в синтез-газе, подвергнутом реакции сдвига, для синтеза аммиака;

- аммиак, полученный в качестве промежуточного продукта, используют совместно с диоксидом углерода, содержащимся в синтез-газе, подвергнутом реакции сдвига, для получения мочевины,

- в способе в соответствии с изобретением не образуется газообразных выбросов, таких как CO2, загрязняющих окружающую среду. Если подвергнутый реакции сдвига синтез-газ содержит большее количество CO2, чем требуется для синтеза аммиака, можно закупать аммиак, чтобы использовать также избыток CO2 для синтеза мочевины.

При использовании предложенного способа, из мочевины может быть получено, например, синтетическое удобрение, с образованием приблизительно 600 кг обогащенного азотом синтетического удобрения на тонну отходов. Текущая рыночная цена таких удобрений составляет приблизительно 350 евро за тонну.

Все затраты описанного здесь способа, включая все капитальные затраты, могут быть покрыты без проблем, с определенным излишком, суммой приблизительно 200 евро на тонну, которую можно получить при продаже обогащенных азотом синтетических удобрений. Прибыль выше среднего по вложенным капиталам обеспечивают независимо от количества сборов, которые записывают на уничтожение отходов.

Далее изобретение описано более подробно со ссылками на основную технологическую схему способа (Фиг.1).

В данном способе отходы любого желаемого состава газифицируют в высокотемпературном реакторе в присутствии O2 при температуре по меньшей мере от 1000°C до 2000°C, предпочтительно, при приблизительно 1500°C, для получения синтез-газа. Время пребывания синтез-газа в реакторе составляет от 1,0 с до 5,0 с, предпочтительно, приблизительно 2,0 с. Для предотвращения преобразования компонентов синтез-газа в токсичные продукты, синтез-газ подвергают шоковому охлаждению (резкому охлаждению).

На следующей стадии синтез-газ, полученный путем вышеописанной высокотемпературной обработки, сначала предпочтительно подвергают сжатию до 1-8 МПа (10-80 бар), предпочтительно, до приблизительно 5 МПа (50 бар).

Для наиболее эффективного использования синтез-газа при получении обогащенного азотом синтетического удобрения, доля водорода в синтез-газе должна быть насколько возможно большой. Реакцию осуществляют в соответствии с формулой CO+H2O=CO2+H2 для обеспечения так называемой реакции сдвига, известной из уровня техники, предпочтительно в охлажденном реакторе с неподвижным каталитическим слоем посредством дозированной подачи пара. Поскольку вследствие экзотермической реакции образуется тепло, реактор охлаждают до идеальной для катализатора температуры 300°C, используя воду.

Подвергнутый реакции сдвига синтез-газ, который предпочтительно включает водород и диоксид углерода, отпаривают на следующей стадии способа, что также известно из уровня техники, чтобы отделить водород. Остается остаточный газ, который включает почти исключительно диоксид углерода.

Водород подвергают каталитическому взаимодействию с азотом из установки для разделения воздуха в реакторе для синтеза, с получением аммиака.

На следующей стадии способа осуществляют синтез мочевины, при котором проводят каталитическое взаимодействие аммиака и диоксида углерода из остаточного газа с получением мочевины в качестве обогащенного азотом синтетического удобрения. Если количество CO2 больше, чем требуется для синтеза мочевины, можно дополнительно закупать NH3, чтобы использовать избыток CO2 для синтеза мочевины.

Преимущество способа, описанного выше, состоит в том, что утилизация отходов не приводит к каким-либо газообразным выбросам. Все образующиеся вещества могут быть использованы в промышленности. Только такие вещества, как водород и диоксид углерода, полученные из газификации компонентов органических отходов в соответствии с «термоселективным способом», используют для получения обогащенного азотом синтетического удобрения. Элементарный азот, необходимый для синтеза аммиака, образуется в качестве побочного продукта на установке для разделения воздуха.

В одном воплощении способа необходимая для реализации способа энергия также может быть получена от регенеративных источников энергии, например, из устройств для преобразования световой или солнечной энергии в электроэнергию.

Похожие патенты RU2538980C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА МОЧЕВИНЫ, СТАБИЛИЗИРОВАННОЙ ФОРМАЛЬДЕГИДОМ 2018
  • Баркер, Сэм
  • Дэвисон, Томас
  • Пэч, Джон Дэвид
RU2758773C2
СПОСОБ ПОЛУЧЕНИЯ МОЧЕВИНЫ 2016
  • Мабрук Рашид
  • Ваврцинек Клеменс
  • Фосс Кристиан
  • Шварцхубер Йозеф
  • Зелигер Андреас
  • Шюрер Бенедикт
  • Саласар Дуарте Габриэль
RU2724901C2
СПОСОБ ПОЛУЧЕНИЯ ГАЗООБРАЗНОГО АММИАКА И СО ДЛЯ СИНТЕЗА МОЧЕВИНЫ 2014
  • Майснер Кристоф
  • Кротов Денис
  • Фон Морштайн Олаф
  • Крюгер Маттиас Патрик
RU2683744C1
СОВМЕСТНОЕ ПОЛУЧЕНИЕ МЕТАНОЛА, АММИАКА И МОЧЕВИНЫ 2018
  • Хан, Пат А.
  • Хеидарпанах, Митра
RU2766961C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ДЛЯ ПРОИЗВОДСТВА АММИАКА 2014
  • Филиппи Эрманно
  • Остуни Раффаэле
RU2680047C1
СПОСОБ ПОЛУЧЕНИЯ МОЧЕВИНЫ И ПРОИЗВОДСТВЕННАЯ УСТАНОВКА, ИСПОЛЬЗУЮЩИЕ CO2, ПОЛУЧЕННЫЙ КИСЛОРОДНО-ТОПЛИВНЫМ ГОРЕНИЕМ 2018
  • Дзамбьянко, Андреа
  • Монтроне, Донато
  • Полицци, Росселла
  • Сала, Массимилиано
  • Узай, Джоя
RU2768935C2
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ АЗОТНЫХ УДОБРЕНИЙ 2008
  • Олич Тед Р.
  • Олсон Эдвин С.
  • Цзян Цзюньхуа
RU2479558C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ДЛЯ ПРОИЗВОДСТВА АММИАКА 2011
  • Филиппи Эрмано
  • Баратто Франческо
  • Панца Серджио
  • Остуни Раффаэле
RU2565321C2
СПОСОБ ОЧИСТКИ СИНТЕЗ-ГАЗА ПУТЕМ ПРОМЫВКИ ВОДНЫМИ РАСТВОРАМИ АМИНОВ 2014
  • Шиш Давид
  • Люкан Анн Клэр
  • Улльрих Норберт
RU2668925C1
СПОСОБ ЭКСПЛУАТАЦИИ ПРОМЫШЛЕННОЙ УСТАНОВКИ ПО ПРОИЗВОДСТВУ МОЧЕВИНЫ, СОДЕРЖАЩЕЙ НЕСКОЛЬКО СИСТЕМ 2011
  • Иидзима Масаки
RU2564308C1

Иллюстрации к изобретению RU 2 538 980 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ МОЧЕВИНЫ ИЗ ОТХОДОВ ЛЮБОГО СОСТАВА

Изобретение относится к способу экологически чистого получения мочевины (CO(NH2)2) из отходов любого состава. Способ включает следующие стадии: а) получение синтез-газа, содержащего CO, CO2 и H2, посредством высокотемпературной обработки отходов в реакторе в присутствии кислорода O2, который получают посредством процесса криогенного разделения воздуха; б) преобразование CO, содержащегося в синтез-газе, с использованием H2O, в CO2+H2 (реакция сдвига) и отделение CO2 от H2; в) преобразование H2, полученного на стадии (б), с использованием N2, полученного из процесса криогенного разделения воздуха на стадии (а), с получением аммиака (NH3), и г) преобразование NH3 со стадии (в), с использованием CO2 со стадии (б), с получением мочевины (CO(NH2)2). Изобретение позволяет получить мочевину экономичным способом без газообразных выбросов, загрязняющих воздух. 1 ил.

Формула изобретения RU 2 538 980 C1

Способ экологически чистого получения мочевины (CO(NH2)2), отличающийся тем, что мочевину получают из отходов любого состава, включающий следующие стадии:
а) получение синтез-газа, содержащего CO, CO2 и H2, посредством высокотемпературной обработки отходов в реакторе в присутствии кислорода O2, который получают посредством процесса криогенного разделения воздуха;
б) преобразование CO, содержащегося в синтез-газе, с использованием H2O, в CO2+H2 (реакция сдвига) и отделение CO2 от H2;
в) преобразование H2, полученного на стадии (б), с использованием N2, полученного из процесса криогенного разделения воздуха на стадии (а), с получением аммиака (NH3), и
г) преобразование NH3 со стадии (в), с использованием CO2 со стадии (б), с получением мочевины (CO(NH2)2).

Документы, цитированные в отчете о поиске Патент 2015 года RU2538980C1

WO 2012177136 A1, 27.12.2012
YAMADA S
et al, Thermoselect Waste Gasification and Reforming Process, JFE TECHNICAL REPORT, 2004, No
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
ЭЛЕКТРИЧЕСКИЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ И СПОСОБ ИЗГОТОВЛЕНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ БИМЕТАЛЛИЧЕСКИХ МАГНИТОПРОВОДОВ 2006
  • Тарасов Анатолий Николаевич
  • Мурашко Вячеслав Михайлович
  • Гопанчук Владимир Васильевич
RU2347106C2
RU 2011108956 A, 20.09.2012

RU 2 538 980 C1

Авторы

Кисс Гюнтер Ханс

Даты

2015-01-10Публикация

2013-07-29Подача