СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ Российский патент 2015 года по МПК F41G9/00 

Описание патента на изобретение RU2539803C1

Изобретение относится к относится к области военной техники и может быть использовано для наведения управляемых ракет.

Известны ручные системы наведения управляемых ракет (см., например, книгу А.Н. Латухина "Противотанковое вооружение". - М.: Воениздат, МО СССР, 1974, С.192-218). Они содержат привод управления, пусковую установку, прицел, блоки выработки управляющих сигналов и команд, линию передачи команд, выход которой соединен с аппаратурой управления управляемой ракетой.

Данная система наведения обладает следующими недостатками: маршевая скорость управляемой ракеты не превышает 80-100 м/сек, что приводит к большому времени полета (20-25 сек), малая скорострельность, наличие непоражаемой зоны перед огневой позицией глубиной 300-600 м.

Кроме того, обучение личного состава правилам стрельбы и практическим навыкам слишком дорого и сложно, так как ручное управление требует строгого отбора и тщательного обучения операторов.

Известна система наведения управляемых ракет (см., например, А.H. Латухин. "Противотанковое вооружение". - М.: Воениздат, МО СССР, 1974, С.208-235). Эта система содержит: привод управления, пусковую установку и прицел, входы которых соединены с выходом привода управления, а также последовательно соединенные координатор управляемой ракеты, вход которого оптически сопряжен с полем зрения прицела, блок выработки управляющих сигналов и блок выработки управляющих команд, выход которого через линию передачи команд соединен с аппаратурой управления управляемой ракетой.

Данная система наведения обладает следующим недостатком: не учитывается воздействия на ракету внешних возмущений, например, силы поперечного (вертикального и горизонтального) ветра и др., наведение происходит с ошибками, что существенно снижает его точность.

Компенсация силы поперечного ветра ни в современных, ни в перспективных системах наведения не предусмотрена. Вместе с тем известно, что на равнинной и пустынной местности точность стрельбы всеми типами снарядов (в том числе и управляемыми ракетами) может существенно изменяться. Это объясняется тем, что в указанных районах возникают мощные воздушные потоки, отклоняющие управляемую ракету в полете по высоте и направлению от точки прицеливания. Это отклонение может быть определено по выражению (см., например, Ф.К. Неупокоев "Стрельба зенитными ракетами".- М.: Воениздат, 1970, с.200-202):

,

где α cos θ - нормальная к траектории составляющая ускорения силы воздушного потока, ko - коэффициент усиления разомкнутого контура управления.

В результате действия потоков воздуха отклонение ракеты может быть существенным, а вероятность попадания уменьшаться на 10-15%.

Наиболее близким к изобретению является система наведения управляемых ракет (см., например, Анцев Г.В., Турнецкий Л.С., патент РФ на изобретение №2267318 от 27.12.2005 г,), которая содержит привод управления, пусковую установку и прицел, систему наведения управляемых ракет, содержащую привод управления пусковую установку и прицел, входы которых соединены с выходом привода управления, и последовательно соединенные координатор управляемой ракеты, вход которого оптически сопряжен с полем зрения прицела, блок выработки управляющих сигналов и блок выработки управляющих команд, выход которого через линию передачи команд соединен с аппаратурой управления управляемой ракетой, сумматор, включенный между блоком выработки управляющих сигналов и блоком выработки управляющих команд, последовательно соединенные ключ, вход которого подключен ко второму выходу координатора, датчик скорости воздушного потока, кинематически связанный с пусковой установкой, квадратор, масштабирующий блок и инвертор, выход которого соединен с третьим входом сумматора, а также блок стабилизации траектории управляемой ракеты, вход которого соединен с третьим выходом координатора, а выход - со вторым входом сумматора.

Недостатком данной системы наведения управляемых ракет является отсутствия возможности наблюдения за динамикой изменения скорости воздушного потока на высоте полета ракеты и соответственно внесение корректирующего сигнала в процесс управления ракетой.

Целью настоящего изобретения является повышение эффективности стрельбы управляемыми ракетами путем повышения точности их наведения на цель за счет учета скорости воздушного потока на высоте полета ракеты.

Указанная цель достигается тем, что в систему наведения управляемых ракет, содержащую привод управления, пусковую установку и прицел, входы которых соединены с выходом привода управления, и последовательно соединенные координатор управляемой ракеты, вход которого оптически сопряжен с полем зрения прицела, блок выработки управляющих сигналов и блок выработки управляющих команд выход, которого через линию передачи команд соединен с аппаратурой управления управляемой ракетой, сумматор, включенный между блоком выработки управляющих сигналов и блоком выработки управляющих команд, квадратор, масштабирующий блок и инвертор, выход которого соединен с третьим входом сумматора, а также блок стабилизации траектории управляемой ракеты, вход которого соединен с третьим выходом координатора, а выход - с вторым входом сумматора, отличающееся тем, что введены устройство отстрела ракет с дипольными отражателями и блок определения скорости воздушного потока, причем предварительно перед пуском управляемой ракеты производится отстрел ракеты с дипольными отражателями, на траектории движения образуется облако дипольных отражателей, которое неконтактно соединено с входом блока определения скорости воздушного потока, выход которого соединен с входом квадратора, блок определения скорости воздушного потока содержит последовательно соединенные приемно-передающую антенну, переключатель приемо-передачи, первый смеситель, усилитель промежуточной частоты и детектор, задающий генератор, первый выход которого соединен с первым входом усилителя мощности, второй вход которого соединен с выходом импульсного модулятора, а выход соединен со вторым входом переключателя приемо-передачи, второй выход задающего генератора через второй смеситель соединен со вторым входом первого смесителя, генератор промежуточной частоты, первый выход которого соединен со вторым входом второго смесителя, выход детектора является выходом блока определения скорости воздушного потока.

Введение новых элементов и связей позволяет получить новую информацию об условиях стрельбы (скорость воздушного потока на высоте полета), определить и ввести необходимые компенсирующие поправки, что обеспечивает повышение точности наведения управляемой ракеты.

На фиг.1 приведена структурная схема системы наведения управляемых ракет, где 1 - цель (Ц), 2 - привод управления (ПУ), 3 - прицел (Пр), 4 - управляемая ракета (УР), 5 - пусковая установка (ПУс), 6 - линия передачи команд (ЛПК), 7 - координатор (К), 8 - блок выработки управляющих сигналов (БВС), 9 - сумматор ("+"), 10 - блок выработки управляющих команд (БВК), 11 - блок стабилизации траектории управляемой ракеты (БСТ), 12 - квадратор (KB), 13 - масштабирующий блок (МБ), 14 - инвертор (Ив), 15 - блок отстрела дипольных отражателей, 16 - дипольные отражатели, 17 - блок определения скорости движения воздушного потока.

На фиг.2 структурная схема блока 17 определения скорости воздушного потока, где 18 приемно-передающая антенна, 19 - переключатель приемо-передачи, первый 20 смеситель, 21 усилитель промежуточной частоты, детектор, 23 - задающий генератор, 24 - усилитель мощности, 25 - импульсный модулятор, 26 - второй смеситель, 27 - генератор промежуточной частоты.

Ключ 11 обеспечивает включение датчика скорости воздушного потока 13, который обычно состоит из крыльчатки, частота вращения которой пропорциональна скорости воздушного потока, и преобразователя вращения крыльчатки в электрический сигнал (см., например, В.В. Корнеев и др. «Основы автоматики и танковые автоматические системы». - М.: ВА БТВ, 1976, с.159-161). Блок 13 кинематически связан с пусковой установкой 5 так, чтобы измерительная ось прибора была перпендикулярна траектории полета управляемой ракеты. Блок стабилизации траектории управляемой ракеты 11 обеспечивает уменьшение колебательности управляемой ракеты относительно среднего значения ее траектории. Он содержит блок разрешения, срабатывающий при значительном увеличении сигнала на выходе блока 7, и блок формирования сигнала дополнительной коррекции (не показаны). Квадратор 12 обеспечивает возведение поданного на него сигнала с блока 17 (т.е. скорости воздушного потока) во вторую степень и его подачу на вход блока 13. Масштабирующий блок 13 обеспечивает получение сигнала, соответствующего аэродинамической силе, действующей на управляемую ракету в результате действия воздушного потока. Его значение определяется выражением (см., например, Неупокоев Ф.К. «Стрельба зенитными ракетами». - М.: Воениздат, 1970, с.99-121):

где k - коэффициент пропорциональности, определяющий уровень сигнала на выходе блока 15 от действующей силы, Сy - коэффициент сопротивления управляемой ракеты воздушному потоку в поперечной плоскости, p - плотность воздуха, S - характерная площадь управляемой ракеты.

Инвертор 14 обеспечивает изменение полярности сигнала с блока 15.

Система наведения управляемых ракет содержит привод 2 управления (ПУ), прицел (Пр 3), управляемую ракету (УР) 4, пусковую установку (ПУс) 5, линию 6 передачи команд (ЛПК), координатор (К) 7, блок 8 выработки управляющих сигналов (БВС), сумматор ("+") 9, блок 10 выработки управляющих команд (БВК), блок 11 стабилизации траектории управляемой ракеты (БСТ), квадратор (KB) 12, масштабирующий блок (МБ) 13, инвертор (Ив) 14, блок 15 отстрела дипольных отражателей, дипольные отражатели 16, блок 17 определения скорости движения воздушного потока.

Блок 17 определения скорости движения воздушного потока содержит приемно-передающую антенну 18, переключатель приемо-передачи 19, первый 20 смеситель, усилитель 21 промежуточной частоты, детектор 22, задающий генератор 23, усилитель 24 мощности, импульсный модулятор 25, второй 26 смеситель, генератор 27 промежуточной частоты.

Работает предлагаемая система наведения управляемой ракеты следующим образом.

Предварительно перед пуском управляемой ракеты устройством 15 производится отстрел ракеты с дипольными отражателями, при этом на траектории движения образуется облако 16 дипольных отражателей, которое неконтактно соединено с входом блока 17 определения скорости воздушного потока.

Приемно-передающая антенна 18 излучает зондирующие импульсы, поступающие через переключатель приемо-передачи 22 от передатчика, построенного по многокаскадному принципу, в котором колебания задающего генератора 23 усиливаются в усилителе мощности 24, в котором одновременно происходит импульсная модуляция сигнала с частотой повторения Fп, задаваемой импульсным модулятором 25.

Отраженные от облака 16 дипольных отражателей импульсы принимаются антенной 18 и через переключатель приемо-передачи 19 поступают на первый вход первого 20 смесителя. На второй вход первого 20 смесителя с выхода второго смесителя 26 поступает гетеродинный сигнал, сформированный из колебаний задающего генератора 23 и колебаний генератора промежуточной частоты 27. Преобразованные в первом 20 смесителе в колебания на промежуточной частоте fпч сигналы цели усиливаются до необходимого уровня в усилителе промежуточной частоты 21 и поступают на детектор 22. На выходе детектора 22 образуются биения, которые с учетом импульсного характера зондирования образуют последовательность видеоимпульсов, модулированных по амплитуде доплеровской частотой fд в соответствии со скоростью движения дипольных отражателей.

Данный сигнал поступает в блок 12, где сигнал возводится во вторую степень, а в блоке 13 окончательно преобразуется в соответствии с выражением (1), инвертируется в блоке 14, а затем подается на третий вход сумматора 9 в качестве сигнала компенсации силы воздушного потока, обеспечивая ввод информации о скорости движения воздушного потока на высотах применения управляемой ракеты.

Совместив с помощью привода управления 2 прицельную марку прицела 3 с целью 1 и задав соответствующее положение пусковой установке 5 с управляемой ракетой 4, наводчик-оператор производит пуск управляемой ракеты 4. После пуска управляемая ракета 4 попадает в поле зрения прицела 3 и съюстированное с ним поле зрения координатора 7. Координатор обеспечивает выработку сигнала, соответствующего отклонению управляемой ракеты от линии прицеливания, и подает его на вход блока 8 выработки сигнала управления, который производит усиление и корректировку сигнала управления и подает его через сумматор 9 на блок 10 выработки управляющих команд, где преобразуется, шифруется и в виде управляющей команды подается через линию передачи команд 6 на аппаратуру управления управляемой ракетой 4, которая под действием полученной команды перемещается к линии прицеливания, чем и устраняется рассогласование между ней и линией прицеливания.

Введенная совокупность признаков обеспечивает измерение внешнего вредного возмущения воздушного потока, определение и формирование необходимой компенсирующей поправки, которая уменьшает (вплоть до устранения) отклонение управляемой ракеты от линии прицеливания, что повышает точность ее наведения.

Похожие патенты RU2539803C1

название год авторы номер документа
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2013
  • Ефанов Василий Васильевич
  • Чубыкин Андрей Геннадьевич
  • Зледенный Николай Павлович
  • Савельев Дмитрий Олегович
RU2539842C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2013
  • Ефанов Василий Васильевич
  • Чубыкин Андрей Геннадьевич
  • Зледенный Николай Павлович
  • Савельев Дмитрий Олегович
RU2539833C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2013
  • Ефанов Василий Васильевич
  • Подкопаев Александр Владимирович
  • Канивец Виктор Юрьевич
  • Васильев Валерий Александрович
RU2539841C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2013
  • Ефанов Василий Васильевич
  • Подкопаев Александр Владимирович
  • Канивец Виктор Юрьевич
  • Васильев Валерий Александрович
RU2539825C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2013
  • Ефанов Василий Васильевич
  • Подкопаев Александр Владимирович
  • Канивец Виктор Юрьевич
  • Васильев Валерий Александрович
RU2539822C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2010
  • Белоконь Сергей Петрович
  • Дерюгин Борис Борисович
  • Дииб Бассам Ахмед
  • Зайцев Сергей Дмитриевич
  • Зиганшин Дамир Файзрахманович
  • Кириченко Александр Александрович
  • Павлов Юрий Павлович
  • Ткаченко Владимир Иванович
  • Черкасов Владислав Николаевич
RU2421681C1
СПОСОБ САМОНАВЕДЕНИЯ МАЛОРАЗМЕРНЫХ РАКЕТ НА ЦЕЛЬ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Ефанов Василий Васильевич
  • Федяев Виктор Николаевич
  • Кондрашов Николай Георгиевич
  • Савельев Дмитрий Олегович
RU2539823C1
САМОЛЕТНАЯ ПРИЦЕЛЬНАЯ СИСТЕМА ДЛЯ БЛИЖНЕГО ВОЗДУШНОГО БОЯ 2013
  • Ефанов Василий Васильевич
  • Васильев Валерий Александрович
  • Жуков Алексей Сергеевич
  • Савельев Дмитрий Олегович
RU2544281C1
САМОЛЕТНАЯ ПРИЦЕЛЬНАЯ СИСТЕМА ДЛЯ БЛИЖНЕГО ВОЗДУШНОГО БОЯ 2013
  • Ефанов Василий Васильевич
  • Бабаянц Евгений Николаевич
  • Гусев Александр Викторович
  • Савельев Дмитрий Олегович
RU2542830C1
Способ управления вооружением многофункциональных самолетов тактического назначения и система для его осуществления 2020
  • Ефанов Василий Васильевич
RU2748133C1

Иллюстрации к изобретению RU 2 539 803 C1

Реферат патента 2015 года СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ

Изобретение относится к военной технике, а именно к системам наведения управляемых ракет. Система наведения управляемых ракет, содержит привод управления, прицел, управляемую ракету, пусковую установку, линию передачи команд, координатор, блок выработки управляющих сигналов, сумматор, блок выработки управляющих команд, ключ, блок стабилизации траектории управляемой ракеты, квадратор, масштабирующий блок, инвертор, устройство отстрела ракеты, блок определения скорости движения воздушного потока. Блок определения скорости движения воздушного потока содержит приемно-передающую антенну, переключатель приемо-передачи, первый смеситель, усилитель промежуточной частоты, детектор, задающий генератор, усилитель мощности, импульсный модулятор, второй смеситель, генератор промежуточной частоты. Технический результат заключается в повышении эффективности стрельбы управляемыми ракетами. 2 ил.

Формула изобретения RU 2 539 803 C1

Система наведения управляемых ракет содержит привод управления, пусковую установку и прицел, входы которых соединены с выходом привода управления, и последовательно соединенные координатор управляемой ракеты, вход которого оптически сопряжен с полем зрения прицела, блок выработки управляющих сигналов и блок выработки управляющих команд, выход которого через линию передачи команд соединен с аппаратурой управления управляемой ракетой, сумматор, включенный между блоком выработки управляющих сигналов и блоком выработки управляющих команд, квадратор, масштабирующий блок и инвертор, выход которого соединен с третьим входом сумматора, а также блок стабилизации траектории управляемой ракеты, вход которого соединен с третьим выходом координатора, а выход - с вторым входом сумматора, отличающаяся тем, что введены устройство отстрела ракет с дипольными отражателями и блок определения скорости воздушного потока, причем предварительно перед пуском управляемой ракеты производится отстрел ракеты с дипольными отражателями, на траектории движения образуется облако дипольных отражателей, которое неконтактно соединено с входом блока определения скорости воздушного потока, выход которого соединен с входом квадратора, блок определения скорости воздушного потока содержит последовательно соединенные приемно-передающую антенну, переключатель приемо-передачи, первый смеситель, усилитель промежуточной частоты и детектор, задающий генератор, первый выход которого соединен с первым входом усилителя мощности, второй вход которого соединен с выходом импульсного модулятора, а выход соединен со вторым входом переключателя приемо-передачи, второй выход задающего генератора через второй смеситель соединен со вторым входом первого смесителя, генератор промежуточной частоты, первый выход которого соединен со вторым входом второго смесителя, выход детектора является выходом блока определения скорости воздушного потока.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539803C1

УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЗНАКА НАПРАВЛЕНИЯ ДВИЖЕНИЯ ЦЕЛИ 2004
  • Анцев Г.В.
  • Турнецкий Л.С.
RU2267138C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ 2010
  • Головань Михаил Витальевич
  • Дииб Бассам Ахмед
  • Игнатов Александр Васильевич
  • Краснянчук Николай Алексеевич
  • Старостин Михаил Михайлович
  • Ткаченко Владимир Иванович
  • Ткаченко Наталия Владимировна
RU2436032C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМЫХ РАКЕТ 2010
  • Белоконь Сергей Петрович
  • Дерюгин Борис Борисович
  • Дииб Бассам Ахмед
  • Зайцев Сергей Дмитриевич
  • Зиганшин Дамир Файзрахманович
  • Кириченко Александр Александрович
  • Павлов Юрий Павлович
  • Ткаченко Владимир Иванович
  • Черкасов Владислав Николаевич
RU2421681C1
US 4659036 A, 21.04.1987
US 3286956 A, 22.11.1966

RU 2 539 803 C1

Авторы

Ефанов Василий Васильевич

Чубыкин Андрей Геннадьевич

Зледенный Николай Павлович

Савельев Дмитрий Олегович

Даты

2015-01-27Публикация

2013-11-06Подача