ЛЮТЕЦИЙСОДЕРЖАЩИЙ СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ Российский патент 2015 года по МПК C04B35/40 

Описание патента на изобретение RU2542065C1

Изобретение относится к области изготовления новых спин-стекольных материалов, которые могут быть полезны для развития магнитных информационных технологий и химической промышленности.

Известно монокристаллическое четырехкомпонентное оксидное соединение Ba2Fe2GeO7 [Г. Петраковский, Л. Безматерных, И. Гудим, О. Баюков, А. Воротынов, А. Бовина, Р. Шимчак, М. Баран, К. Риттер. ФТТ, т.48, №10 (2006)] с "замороженным" пространственным распределением ориентации спиновых магнитных моментов в области низких температур - состоянием спинового стекла, содержащее один сорт магнитных ионов (ионы железа), с кристаллической решеткой, характеризуемой пространственной группой P421m, и синтезированное методом раствор-расплавной кристаллизации.

Данное соединение характеризуется сложностью технологического процесса синтеза монокристаллов.

Наиболее близким к заявленному изобретению по технической сущности является оксидное соединение SmFeTi2O7, проявляющее магнитное состояние спинового стекла в области низких температур, с кристаллической решеткой, характеризуемой пространственной группой Pcnb, и синтезированное с помощью твердотельной реакции [Патент РФ №2470897, МПК C04B 35/40, H01L 43/10, опубл. 27.12.12 бюл. №36, (прототип)].

В состав данного четырехкомпонентного соединения входят два сорта магнитных ионов самария и железа. Наличие в составе редкоземельного иона самария, обладающего большой нейтронной поглощающей способностью (сечение захвата нейтронов 6800 барн), затрудняет применение к данному оксидному соединению методов нейтронного исследования.

Техническим результатом изобретения является получение нового четырехкомпонентного оксидного материала, содержащего немагнитный редкоземельный ион Lu3+ с низкой нейтронной поглощающей способностью (сечение захвата нейтронов 112 барн).

Технический результат достигается тем, что в лютецийсодержащем спин-стекольном оксидном материале, содержащем железо, титан и кислород, новым является то, что он дополнительно содержит лютеций, при следующем соотношении компонентов, масс.%: железо 12,73, титан 21,83, лютеций 39,90 и кислород 25,54.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемое изобретение отличается от известного качественным и количественным составом, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Признаки, отличающие заявляемое решение от прототипа, не выявлены при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Способ получения спин-стекольного материала LuFeTi2O7 представляет собой синтез реакцией в твердой фазе. В качестве исходных компонентов используются оксиды Fe2O3, TiO2 и Lu2O3. Используется следующее соотношение исходных соединений, масс.%: Fe2O3 - 18,21, Lu2O3 - 45,37 и TiO2 - 36,42.

Шихта составляется из чистых (степень чистоты - "осч") компонентов с учетом фактического содержания основного вещества в синтезируемом материале. С целью более точной навески при составлении шихты исходные компоненты предварительно высушиваются в течение 6-10 часов при температуре 105°C в сушильном шкафу, затем навешиваются с точностью 0,005 г. Исходные компоненты шихты смешиваются и затем перетираются вручную пестиком в агатовой ступке с добавлением этилового спирта. Из приготовленной шихты с помощью пресс-формы под давлением около 10 кбар формуются таблетки диаметром 10 мм и толщиной 1,5-2,0 мм, которые помещаются в алундовый тигель и отжигаются в печи. Нагрев печи, контролируемый программным регулятором, осуществляется со скоростью 150 град/час. Температура в печи измеряется с помощью платино-платино-родиевых термопар, точность измерения не превышает 0,1°C. Перепад температур в рабочей области не превышает 5°C. Охлаждение печи осуществляется естественным путем после отключения нагрева печи. В процессе синтеза лютецийсодержащего спин-стекольного магнитного материала проводится три отжига, режим температурной обработки представлен в табл.1. После завершения каждого отжига таблетки вновь перетираются, формуются и помешаются для последующего отжига в печь.

Химический и фазовый состав полученных образцов контролируется методом рентгеноструктурного анализа. Содержание элементов в лютецийсодержащем спин-стекольном материале показано в табл.2. Основные кристаллографические характеристики LuFeTi2O7 и параметры рентгеноструктурного эксперимента приведены в табл.3, 4. Согласно результатам рентгеноструктурного анализа лютецийсодержащий спин-стекольный магнитный материал имеет ромбическую кристаллическую структуру, пространственную группу Pcnb.

Заявляемое техническое решение иллюстрируется следующим:

Из экспериментальных данных следует, что полученный материал (LuFeTi2O7) характеризуется "беспорядком" в распределении ионов железа по кристаллографическим позициям (табл.4), что характерно для соединений со спин-стекольным магнитным состоянием.

Наличие состояния спинового стекла при низких температурах подтверждено измерениями температурной зависимости магнитного момента (фиг.1). Магнитный момент образца, измеренный в магнитном поле Н=500 Ое, при температурах ниже температуры замерзания Tf=4.7 К зависит от способа охлаждения образца (кривая 1 соответствует охлаждению образца во внешнем магнитном поле Н=500 Ое, кривая 2 - в отсутствие магнитного поля).

Таким образом, заявляемый материал, полученный из оксидов железа, титана, лютеция с помощью твердотельной реакции, магнитная подсистема которого формируется магнитными ионами одного сорта - ионами трехвалентного железа, обладает магнитным состоянием спинового стекла.

Синтезированный новый магнитный материал, отвечающий формуле LuFeTi2O7, расширяет ряд материалов с магнитным состоянием спинового стекла, формируемого ионами одного сорта, что способствует более глубокому пониманию физики спин-стекольных состояний в системе RFeTi2O7, выявлению роли магнитных подрешеток в формировании "замороженного" пространственного распределения ориентации спиновых магнитных моментов в области низких температур и, соответственно, развитию возможностей применения.

Таблица 1 Режим температурной обработки в технологическом процессе изготовления лютецийсодержащего спин-стекольного магнитного материала № отжига Температура отжига, °C Длительность отжига, час 1 1200 24 2 1200 16 1250 8 3 1200 16 1250 8

Таблица 2 Содержание элементов в лютецийсодержащем спин-стекольном материале Вещество Содержание элементов, масс.% Соединение Элементы и их содержание в соединении, масс.% Лютецийсодержащий цирконолит Lu Fe Ti O 39,90 12,73 21.83 25,54

Таблица 3 Основные кристаллографические характеристики соединения LuFeTi2O7 с пространственной группой Pcnb (a, b, c - параметры ячейки, V - объем ячейки) и параметры рентгеноструктурного эксперимента Величина Значение a, Å 9.8093(1) b, Å 13.5069(1) c, Å 7.30302(7) v, Å3 967.61(2) Z 8 Dx, г/см3 6.069 η, мм-1 92.808 2θ-интервал, ° 5-140 Число рефлексов 927 Число уточняемых параметров 74 Rwp, % 2.011 Rexp, % 0.642 Rp, % 1.862 GOF(χ) 3.134

Таблица 4 Координаты атомов, заселенности позиций р и тепловые параметры Biso Атом Кратность позиции X Y Z P Biso, Å2 Lu 8 0.24831(73) 0.13186(12) 0.00462(39) 1 1.404(27) Ti1 8 0.2550(18) 0.38632(39) 0.4887(10) 1.000(31) 1.5 Fe1 8 0.2550(18) 0.38632(39) 0.4887(10) 0.000(31) 1.5 Ti2 4 0.5 0.25 0.2613(20) 0.84(12) 1.5 Fe2 4 0.5 0.25 0.2613(20) 0.16(12) 1.5 Ti3 8 0.00603(77) 0.48713(43) 0.2587(15) 0.140(70) 1.5 Fe3 8 0.00603(77) 0.48713(43) 0.2587(15) 0.860(70) 1.5 Fe 4 0 0.25 0.3379(17) 0.78 2.51(27) Fei 8 0.0272(59) 0.2846(39) 0.1899(72) 0.11 2.51(27) O1 8 0.16385(90) 0.3920(11) 0.2340(32) 1 0.97(14) O2 8 0.4026(17) 0.1134(16) 0.2563(51) 1 0.97(14) O3 8 0.1100(20) 0.14916(98) 0.2352(40) 1 0.97(14) O4 8 0.3636(23) 0.2921(15) 0.4429(31) 1 0.97(14) O5 8 0.3881(26) 0.2673(15) 0.0533(33) 1 0.97(14) O6 8 0.3760(25) 0.4901(19) 0.4058(28) 1 0.97(14) O7 8 0.3720(24) 0.4860(18) 0.0421(30) 1 0.97(14)

Похожие патенты RU2542065C1

название год авторы номер документа
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ 2013
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Великанов Дмитрий Анатольевич
  • Резина Елена Геннадьевна
  • Молокеев Максим Сергеевич
RU2526086C1
СПОСОБ ПОЛУЧЕНИЯ САМАРИЙСОДЕРЖАЩЕГО СПИН-СТЕКОЛЬНОГО МАГНИТНОГО МАТЕРИАЛА 2011
  • Петраковский Герман Антонович
  • Дрокина Тамара Васильевна
  • Великанов Дмитрий Анатольевич
  • Шадрина Александра Леонидовна
  • Молокеев Максим Сергеевич
  • Степанов Геннадий Николаевич
RU2470897C2
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ 2014
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Резина Елена Геннадьевна
  • Великанов Дмитрий Анатольевич
  • Молокеев Максим Сергеевич
RU2555719C1
ЖЕЛЕЗОМАРГАНЦЕВЫЙ ВАНАДАТ С МАГНИТНЫМ СОСТОЯНИЕМ СПИНОВОГО СТЕКЛА 2024
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Молокеев Максим Сергеевич
  • Великанов Дмитрий Анатольевич
RU2824621C1
Ванадийсодержащий спин-стекольный магнитный материал 2023
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Молокеев Максим Сергеевич
  • Великанов Дмитрий Анатольевич
RU2804932C1
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ С СОДЕРЖАНИЕМ ИТТЕРБИЯ 2017
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Великанов Дмитрий Анатольевич
  • Молокеев Максим Сергеевич
RU2647544C1
Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала 2018
  • Платунов Михаил Сергеевич
  • Казак Наталья Валерьевна
  • Князев Юрий Владимирович
  • Мошкина Евгения Михайловна
  • Великанов Дмитрий Анатольевич
  • Соловьев Леонид Александрович
RU2676047C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ МАГНИТНОГО МОМЕНТА В НАНОСЛОЕ 2007
  • Аксенов Виктор Лазаревич
  • Никитенко Юрий Васильевич
RU2360234C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКОПЛЕНОЧНОГО ОКСИДНОГО МАТЕРИАЛА, ЛЕГИРОВАННОГО ИОНАМИ ФЕРРОМАГНИТНОГО МЕТАЛЛА, ДЛЯ СПИНТРОНИКИ 2007
  • Борухович Арнольд Самуилович
  • Игнатьева Нелли Ивановна
  • Галяс Анатолий Иванович
  • Янушкевич Казимир Иосифович
  • Демиденко Олег Федорович
  • Стогний Александр Иванович
RU2360317C2
АНТЕННА ЭЛЕКТРОМАГНИТНЫХ СОЛИТОНОВ 2002
  • Смелов М.В.
RU2208273C1

Реферат патента 2015 года ЛЮТЕЦИЙСОДЕРЖАЩИЙ СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ

Изобретение относится к области изготовления материалов с магнитным состоянием спинового стекла, которые могут быть полезны для развития магнитных информационных технологий и химической промышленности. Технический результат изобретения заключается в получении нового поликристаллического четырехкомпонентного магнитного материала со спин-стекольным магнитным состоянием с низкой нейтронной поглощающей способностью, формируемым магнитными ионами одного сорта - трехвалентными ионами железа. Спин-стекольный материал содержит, масс.%: железо - 12,73, титан - 21,83, лютеций - 39,90, кислород - 25,54. 1 ил., 4 табл.

Формула изобретения RU 2 542 065 C1

Лютецийсодержащий спин-стекольный оксидный материал, содержащий железо, титан и кислород, отличающийся тем, что он дополнительно содержит лютеций, при следующем соотношении компонентов, масс.%:
Железо 12,73;
Титан 21,83;
Лютеций 39,90;
Кислород 25,54.

Документы, цитированные в отчете о поиске Патент 2015 года RU2542065C1

СПОСОБ ПОЛУЧЕНИЯ САМАРИЙСОДЕРЖАЩЕГО СПИН-СТЕКОЛЬНОГО МАГНИТНОГО МАТЕРИАЛА 2011
  • Петраковский Герман Антонович
  • Дрокина Тамара Васильевна
  • Великанов Дмитрий Анатольевич
  • Шадрина Александра Леонидовна
  • Молокеев Максим Сергеевич
  • Степанов Геннадий Николаевич
RU2470897C2
RU 2009141057 A, 10.05.2011
US 6402980 B1, 11.06.2002
WO 2010023971 A1, 04.03.2010
US 6780344 B2, 24.08.2004

RU 2 542 065 C1

Авторы

Дрокина Тамара Васильевна

Петраковский Герман Антонович

Великанов Дмитрий Анатольевич

Молокеев Максим Сергеевич

Даты

2015-02-20Публикация

2014-02-11Подача