СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ Российский патент 2014 года по МПК C04B35/40 C04B35/462 

Описание патента на изобретение RU2526086C1

Изобретение относится к созданию новых магнитных материалов, а именно материалов с магнитным состоянием спинового стекла, которое характеризуется хаотичной фиксированной ориентацией спинов, и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

В связи с постоянным интересом к поиску новых материалов, перспективных для использования в различных областях техники, целенаправленное получение веществ с разнообразными магнитными свойствами и типами магнитного упорядочения является одной из актуальных задач физики конденсированного состояния. Разработка и создание магнитных материалов требует исследования их свойств. Среди методов исследования нейтронография дает однозначную информацию о магнитной структуре, о магнитных фазовых состояниях и их изменении. Преимущества нейтронографических методов исследования связаны со свойствами нейтронов, в частности, с наличием магнитного момента, что приводит к их рассеиванию, обусловленному взаимодействием не только с атомными ядрами, но и с имеющими магнитные моменты электронными оболочками.

Известно четырехкомпонентное соединение GdFeTi2O7 [Г.А. Петраковский, Т.В. Дрокина, Д.А. Великанов, О.А. Баюков, М.С. Молокеев, А.В. Карташев, А.Л. Шадрина, А.А. Мицук, ФТТ 54, 1701 (2012)], обладающее свойствами спинового стекла.

Этот материал из-за содержания элемента Gd поглощает нейтроны и имеет низкую намагниченность.

Наиболее близким аналогом, принятым за прототип, является самарийсодержащий спин-стекольный магнитный материал SmFeTi2O7 [патент RU №2470897 C2, C04B 35/40 (2011)], содержащий железо, титан, кислород и редкоземельный элемент - самарий при следующем соотношении, ат.%: Fe - 9,09; Ti - 18,18; О - 63,64; Sm - 9,09.

В формировании магнитного состояния прототипа участвуют два вида магнитных ионов: редкоземельный ион Sm3+ и ион железа Fe3+.

Недостатками известного технического решения являются высокое поглощение нейтронов и сравнительно низкая намагниченность. Высокое поглощение нейтронов обеспечивает входящий в состав соединения самарий (сечение захвата нейтронов 6800 барн), что затрудняет проведение нейтронографических исследований.

Техническим результатом изобретения является получение нового магнитного материала TbFeTi2O7 с состоянием спинового стекла, с отсутствием элементов, сильно поглощающих нейтроны, и обладающего повышенной намагниченностью.

Таблица 1 Режим температурной обработки в технологическом процессе изготовления тербийсодержащего спин-стекольного магнитного материала № отжига Температура отжига, °C Длительность отжига, час. 1 1200 24 2 1200 16 1250 8 3 1250 24 4 1250 24

Заявляемое техническое решение иллюстрируется следующим.

В табл.2 приведены содержание элементов, симметрия кристаллической решетки и параметры элементарной ячейки. Согласно результатам рентгеноструктурного анализа тербийсодержащий спин-стекольный магнитный материал имеет ромбическую кристаллическую структуру (пространственная группа Pcnb).

На фиг.1 показана температурная зависимость магнитного момента заявляемого соединения (охлаждение образца в магнитном поле H=0,05 T (FC) и без поля H=0 T (ZFC)). Как видно из рис.1, магнитный момент зависит от магнитной предыстории образца при температурах ниже температуры замерзания Tf=7 K. Это является характерной особенностью магнитоупорядоченных веществ с магнитным состоянием спинового стекла.

На фиг.2 представлены температурные зависимости намагниченности заявляемого тербийсодержащего спин-стекольного магнитного материала и прототипа самарийсодержащего спин-стекольного магнитного материала (охлаждение образцов в магнитном поле H=0,05 T). Сравнительный анализ показывает, что намагниченность заявляемого технического решения выше, чем у прототипа.

Таблица 2 Содержание элементов в тербийсодержащем спин-стекольном магнитном материале и параметры элементарной ячейки Содержание элементов, мас.% Кристаллическая решетка Параметры элементарной ячейки Значения параметров элементарной ячейки Tb Fe Ti O Ромбическая, пространственная группа Pcnb a, Å 9.8568(1) b, Å 13.5942(2) c, Å 7.3788(1) 37,61 13,22 22,66 26,51 V, Å3 988.73(2)

Указанный технический результат достигается тем, что в спин-стекольном магнитном материале, включающем железо, титан, кислород и редкоземельный элемент, новым является то, что в качестве редкоземельного элемента содержится тербий при следующем соотношении мас.%:

Tb 37,61 Fe 13,22 Ti 22,66 O 26,51

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемое изобретение отличается от известного составом, магнитными характеристиками (более высокой намагниченностью), низким сечением захвата нейтронов, допускающим проведение нейтронографических исследований. Таким образом, признаки, отличающие заявляемое решение от прототипа, не выявлены при изучении данной и смежных областей техники и, следовательно, обеспечивают заявленному техническому решению соответствие критериям "новизна" и "изобретательский уровень".

Замещение в составе известного технического решения самария на тербий позволяет устранить указанные недостатки прототипа. В формировании магнитного состояния участвуют два вида магнитных ионов: редкоземельный ион Tb3+ и ион железа Fe3+. Заявляемый материал обладает магнитным состоянием спинового стекла, слабо поглощает нейтроны, сечение захвата нейтронов тербия составляет 44 барн (в сравнении самарий - 6800 барн). Кроме того, полученное соединение обладает более высокой по сравнению с соединением SmFeTi2O7 намагниченностью.

Способ получения тербийсодержащего спин-стекольного магнитного материала представляет собой твердофазный синтез. В качестве исходных компонентов используются оксиды Fe2O3, TiO2 и Tb2O3 при следующем соотношении, масс.%:

Fe2O3 - 18,90; TiO2 - 37,81; Tb2O3 - 43,29.

Исходные соединения, составляющие шихту, перед развеской высушиваются в течение 6 часов при температуре 105°C, смешиваются и перетираются вручную пестиком в ступке с добавлением этилового спирта. Из приготовленной шихты с помощью пресс-формы формируются таблетки под давлением около 10 кбар диаметром 10 мм и толщиной 1,5-2,0 мм. Таблетки помещают в алундовый тигель и отжигают в печи. Нагрев печи осуществляется со скоростью 150 град/час и регулируется программным регулятором. Температура в печи измеряется с помощью платино-родиевых термопар с точностью 0,1°C. Охлаждение печи происходит естественным путем. Отжиг производится в четыре этапа (табл.1). Максимальная температура отжига 1250°C. После завершения каждого этапа синтеза таблетки вновь перетираются, прессуются и снова помещаются в печь для последующего отжига.

Химический и фазовый состав полученных образцов контролируется методом рентгеноструктурного анализа, а также с помощью оптического микроскопа после каждого этапа синтеза.

Таким образом, заявляемый материал, полученный из оксидов железа, титана, тербия, магнитная подсистема которого формируется ионами железа и тербия, обладает магнитным состоянием спинового стекла, а также содержит элемент Tb с низким сечением захвата нейтронов.

Новый магнитный материал, отвечающий формуле TbFe1-xTi2+xO7 (x=0, 005), с одной стороны, расширяет класс магнитных соединений с магнитным состоянием спинового стекла, с другой стороны, исследовательские возможности изучения материалов в физике неупорядоченного состояния.

Похожие патенты RU2526086C1

название год авторы номер документа
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ 2014
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Резина Елена Геннадьевна
  • Великанов Дмитрий Анатольевич
  • Молокеев Максим Сергеевич
RU2555719C1
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ С СОДЕРЖАНИЕМ ИТТЕРБИЯ 2017
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Великанов Дмитрий Анатольевич
  • Молокеев Максим Сергеевич
RU2647544C1
ЛЮТЕЦИЙСОДЕРЖАЩИЙ СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ 2014
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Великанов Дмитрий Анатольевич
  • Молокеев Максим Сергеевич
RU2542065C1
Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала 2018
  • Платунов Михаил Сергеевич
  • Казак Наталья Валерьевна
  • Князев Юрий Владимирович
  • Мошкина Евгения Михайловна
  • Великанов Дмитрий Анатольевич
  • Соловьев Леонид Александрович
RU2676047C1
СПОСОБ ПОЛУЧЕНИЯ САМАРИЙСОДЕРЖАЩЕГО СПИН-СТЕКОЛЬНОГО МАГНИТНОГО МАТЕРИАЛА 2011
  • Петраковский Герман Антонович
  • Дрокина Тамара Васильевна
  • Великанов Дмитрий Анатольевич
  • Шадрина Александра Леонидовна
  • Молокеев Максим Сергеевич
  • Степанов Геннадий Николаевич
RU2470897C2
Ванадийсодержащий спин-стекольный магнитный материал 2023
  • Дрокина Тамара Васильевна
  • Петраковский Герман Антонович
  • Молокеев Максим Сергеевич
  • Великанов Дмитрий Анатольевич
RU2804932C1
Способ получения диопсидного стекла (варианты) 2019
  • Кох Александр Егорович
  • Кононова Надежда Георгиевна
  • Соколов Владимир Васильевич
RU2712885C1
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Бурханов Геннадий Сергеевич
  • Лукин Александр Александрович
  • Перевощиков Павел Сергеевич
  • Сергеев Сергей Владимирович
  • Кольчугина Наталья Борисовна
  • Клюева Наталия Евгеньевна
  • Дормидонтов Андрей Гурьевич
RU2500049C1
МАГНИТООПТИЧЕСКИЙ ЭЛЕМЕНТ 1993
  • Рандошкин В.В.
RU2098856C1
МАТЕРИАЛ ДЛЯ РЕДКОЗЕМЕЛЬНЫХ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Савченко А.Г.
  • Менушенков В.П.
  • Лилеев А.С.
RU2174261C1

Иллюстрации к изобретению RU 2 526 086 C1

Реферат патента 2014 года СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти. Спин-стекольный магнитный материал TbFeTi2O7 включает железо, титан, кислород и тербий при следующем соотношении компонентов, мас.%: Tb - 37,61; Fe - 13,22; Ti - 22,66; О - 26,51. Способ получения тербийсодержащего спин-стекольного материала включает приготовление шихты из оксидов Fe2O3, Tb2О3 и TiO2, формование таблеток и их спекание в четыре этапа, максимальная температура отжига составляет 1250°C. Техническим результатом изобретения является получение нового магнитного материала с состоянием спинового стекла, с отсутствием сильно поглощающих нейтроны элементов. 2 табл., 2 ил.

Формула изобретения RU 2 526 086 C1

Спин-стекольный магнитный материал, включающий железо, титан, кислород и редкоземельный элемент, отличающийся тем, что в качестве редкоземельного элемента содержит тербий при следующем соотношении, мас.%:
Tb 37,61 Fe 13,22 Ti 22,66 O 26,51

Документы, цитированные в отчете о поиске Патент 2014 года RU2526086C1

СПОСОБ ПОЛУЧЕНИЯ САМАРИЙСОДЕРЖАЩЕГО СПИН-СТЕКОЛЬНОГО МАГНИТНОГО МАТЕРИАЛА 2011
  • Петраковский Герман Антонович
  • Дрокина Тамара Васильевна
  • Великанов Дмитрий Анатольевич
  • Шадрина Александра Леонидовна
  • Молокеев Максим Сергеевич
  • Степанов Геннадий Николаевич
RU2470897C2
ПОСТОЯННЫЙ МАГНИТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Нагата Хироси
  • Сингаки Йосинори
RU2445404C2
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
US 7211199 B2, 01.05.2007
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 526 086 C1

Авторы

Дрокина Тамара Васильевна

Петраковский Герман Антонович

Великанов Дмитрий Анатольевич

Резина Елена Геннадьевна

Молокеев Максим Сергеевич

Даты

2014-08-20Публикация

2013-07-10Подача