СПОСОБ И УСТРОЙСТВО ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ NO В ЭНЕРГЕТИЧЕСКОМ КОТЛЕ Российский патент 2015 года по МПК F22B33/18 

Описание патента на изобретение RU2543096C1

УРОВЕНЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу и системе для селективного каталитического восстановления (СКВ) NOx в использующем твердое или жидкое углеводородное топливо энергетическом котле. Более конкретно, настоящее изобретение относится к регулированию температуры топочного газа, поступающего на катализатор восстановления NOx котла.

Описание предшествующего уровня техники

Оксиды азота, также известные как NOx, способствуют образованию кислотного дождя и смога. В соответствии с положениями об охране окружающей среды, требующими снижения выбросов NOx до приемлемых уровней, восстановление NOx во время и после процесса сгорания представляет собой важную задачу при проектировании и эксплуатации современных электростанций.

Оксиды азота представляют собой побочные продукты сгорания твердого и жидкого углеводородного топлива, такого как порошкообразный уголь или мазут, и присутствуют в двух основных формах. Если азот образуется при сгорании на воздухе, NOx называется «термический NOx». Термический NOx образуется, когда на молекулярный азот (N2) воздействуют температуры, превышающие приблизительно 1500°C, которые заставляют его разлагаться с образованием атомарного азота (N), который может затем соединяться с атомарным или молекулярным кислородом, образуя NO или NO2. Если азот происходит из органически связанного азота в топливе, NOx называется термином «топливный NOx».

Разнообразные способы используются для сокращения выбросов оксидов азота. Один способ представляет собой селективное каталитическое восстановление (СКВ), в котором используют катализатор и восстановитель, как правило газообразный аммиак, для восстановления NOx до газообразного азота и воды согласно следующим уравнениям реакций:

4NO+4NH3+O2=>4N2+6H2O

2NO2+4NH3+O2=>3N2+6H2O

Поскольку NOx приблизительно на 95% состоит из NO, первая реакция представляет собой преобладающий процесс. Идеальный температурный интервал для осуществления СКВ обычно составляет от приблизительно 300 до приблизительно 400°C. Когда рабочая температура падает значительно ниже 300°C, увеличивается возможность осаждения бисульфата аммония и триоксида серы на поверхности катализатора. Это может вызывать постепенную потерю активности катализатора. Выше 400°C аммиак может разлагаться, уменьшая эффективность процесса. Если температура превышает приблизительно 450°C, активность катализатора может постепенно снижаться вследствие спекания.

Типичный энергетический котел с использованием СКВ в качестве способа восстановления NOx включает печь в гидравлическом соединении с каналом топочного газа. Сгорание углеводородного топлива происходит в печи с образованием горячих топочных газов, которые поднимаются внутри печи, отдавая часть своей энергии для образования пара на испарительных поверхностях стенок печи. Топочные газы затем проходят через теплоутилизационную область (ТУО) канала топочного газа, где они отдают дополнительную энергию для перегрева пара и нагревания питательной воды на поверхностях экономайзера. Топочные газы, выходящие из секции экономайзера, проходят через катализатор восстановления NOx, воздухоподогреватель и возможные системы очистки топочного газа, выходя, наконец, через вытяжную трубу в атмосферу.

В типичной системе СКВ в некоторой точке в канале топочного газа выше по потоку относительно секции катализатора реагент, такой как газообразный аммиак или раствор мочевины в воде, поступает и смешивается с потоком топочного газа. Смесь реагента и топочного газа затем поступает в секцию катализатора, в которой происходит каталитическое восстановление NOx в реакции реагента и избытка кислорода в топочном газе.

Катализатор, как правило, включает множество слоев твердого каталитического материала, находящегося на пути потока топочного газа. Наиболее распространенные типы используемого каталитического материала и приблизительные интервалы температуры топочного газа, при которой они являются эффективными в качестве катализаторов, представляют собой следующие: диоксид титана (270-400°C), цеолит (300-430°C), оксид железа (380-430°C) и активированный уголь/кокс (100-150°C).

Патент США № 5555849 описывает работающую на ископаемом топливе электростанцию с системой экономайзера выше по потоку относительно катализатора восстановления NOx, где система экономайзера включает обводную линию на водной стороне для поддержания желательной температуры топочного газа в катализаторе восстановления NOx даже в режиме низкой нагрузки.

Европейская патентная публикация EP 0753701 A1 описывает котел с катализатором восстановления NOx, находящимся в канале топочного газа между двумя экономайзерами, имеющий обводной канал топочного газа для экономайзера выше по потоку относительно катализатора восстановления NOx.

Патент США № 6405791 описывает трубчатый воздухоподогреватель с впускной камерой, которая допускает установку модернизированной системы селективного каталитического восстановления (СКВ) выше по потоку относительно воздухоподогревателя в существующем котле.

Помимо проблемы, рассматриваемой в патенте США № 5555849, оказалось, что особенно при установке модернизированной системы катализатора восстановления NOx в существующем энергетическом котле температура топочного газа на катализаторе восстановления NOx может становиться чрезмерно высокой, в частности при высоких нагрузках. Вследствие, например, изменений состава топлива или режима работы котла, или даже неудовлетворительной конструкции котла температура на выпуске экономайзера может превышать 430°C, т.е. находиться выше оптимального температурного интервала существующих катализаторов восстановления NOx.

Таким образом, при установке СКВ ниже по потоку относительно экономайзера для восстановления NOx может потребоваться использование особого катализатора. Другое решение этой проблемы представляет собой установку дополнительных поверхностей экономайзера в теплоутилизационной области (ТУО) котла. В данном способе, однако, увеличивается температура питательной воды, и если температура повышается и приближается к температуре насыщения барабана парового котла, это производит неблагоприятное воздействие на циркуляцию воды в котле и, в конечном счете, снижает производительность котла.

Патентные документы, в том числе японская патентная публикация JP 550700328 A, европейские патентные публикации EP 1956293 A1, EP 1959192 A1 и патент США 5078973 A, описывают котлы с воздухоподогревателем в канале топочного газа выше по потоку относительно денитрационного устройства. Японская патентная публикация JP 7208701 A описывает трубчатый воздухоподогреватель выше по потоку относительно катализатора восстановления NOx и воздухоподогреватель ниже по потоку относительно катализатора восстановления NOx.

Сущность изобретения

Задача настоящего изобретения заключается в том, чтобы предложить способ селективного каталитического восстановления NOx в энергетическом котле, посредством которого можно свести до минимума описанные выше проблемы предшествующего уровня техники.

Еще одна задача настоящего изобретения заключается в том, чтобы предложить устройство для селективного каталитического восстановления NOx в энергетическом котле, посредством которого можно свести до минимума описанные выше проблемы предшествующего уровня техники.

Согласно одному аспекту, настоящее изобретение предлагает способ селективного каталитического восстановления NOx в энергетическом котле, причем данный способ включает следующие стадии: (a) сгорание топлива в печи котла и образование потока топочного газа, который содержит NOx, (b) прохождение потока топочного газа из печи по каналу топочного газа в вытяжную трубу, (c) охлаждение потока топочного газа в теплоутилизационной области, включающей секцию экономайзера, установленную в канале топочного газа, (d) восстановление, по меньшей мере, части NOx до N2 в катализаторе восстановления NOx, находящемся в канале топочного газа ниже по потоку относительно секции экономайзера, и (e) дополнительное охлаждение топочного газа и образование нагретого воздуха в газовом воздухоподогревателе, установленном в канале топочного газа ниже по потоку относительно секции экономайзера и выше по потоку относительно катализатора восстановления NOx.

Согласно еще одному аспекту, настоящее изобретение предлагает энергетический котел с селективным каталитическим восстановлением NOx, причем данный котел включает: (a) топочную камеру для сгорания топлива в печи котла и получения в результате этого потока топочного газа, содержащего NOx, (b) канал топочного газа для прохождения потока топочного газа из печи в вытяжную трубу, (c) теплоутилизационную область, включающую секцию экономайзера, установленную в канале топочного газа для охлаждения потока топочного газа, (d) катализатор восстановления NOx, находящийся в канале топочного газа ниже по потоку относительно секции экономайзера, для восстановления, по меньшей мере, части NOx до N2; и (e) газовый воздухоподогреватель, установленный в канале топочного газа ниже по потоку относительно секции экономайзера и выше по потоку относительно катализатора восстановления NOx, для дополнительного охлаждения топочного газа и образования нагретого воздуха.

Настоящее изобретение, т.е. установка газового воздухоподогревателя выше по потоку относительно катализатора восстановления NOx для охлаждения топочного газа, предоставляет преимущество возможной установки традиционного катализатора восстановления NOx с использованием стандартного каталитического материала. Газовый воздухоподогреватель предпочтительно представляет собой трубчатый воздухоподогреватель, но в некоторых случаях он может представлять собой теплообменники других типов, которые переносят тепло от топочного газа к воздуху, поступающему для сгорания в котле. Согласно еще одному предпочтительному варианту осуществления настоящего изобретения, газовый воздухоподогреватель представляет собой теплообменник с рециркулирующим теплоносителем. В некоторых случаях газовый воздухоподогреватель может, в качестве альтернативы, представлять собой еще один подходящий тип, например тепловую трубу.

Преимущественно энергетический котел включает горелку или, на практике, комплект горелок для сжигания топлива, направляемого в горелки потоком первичного воздуха. Согласно первому варианту осуществления настоящего изобретения, предназначенный для сжигания воздух, нагреваемый в газовом воздухоподогревателе, поступает в горелки в качестве вторичного воздуха. Вследствие использования вторичного воздуха в качестве охлаждающей среды в данном способе отсутствует риск перегрева охлаждающей среды, который может иметь место при использовании питательной воды в качестве охлаждающей среды. Кроме того, поскольку тепло, передаваемое вторичному воздуху, можно полностью использовать в котле, данный способ не влияет на работу или эффективность существующего котла. В качестве альтернативы, предназначенный для сжигания воздух, нагреваемый в газовом воздухоподогревателе, может также представлять собой другие типы предназначенного для сжигания воздуха, например первичный воздух, который поступает в печь.

При использовании способа согласно настоящему изобретению, в различных режимах нагрузки котла поток воздуха через газовый воздухоподогреватель можно регулировать или останавливать, чтобы обеспечивать желательную температуру топочного газа, поступающего на катализатор. Таким образом, поток воздуха можно преимущественно регулировать непосредственно в зависимости от режима нагрузки котла или в зависимости от измеренной температуры топочного газа, поступающего на катализатор восстановления NOx. Таким образом, настоящее изобретение предлагает простой способ обеспечения оптимизированной работы катализатора в различных режимах нагрузки, например, без необходимости обеспечивать экономайзер обводным потоком топочного газа или обводным потоком на водной стороне для работы в режиме низкой нагрузки. Настоящее изобретение, таким образом, предлагает регулирование температуры в широком интервале без необходимости какого-либо изменения контура топочного газа или пара/воды в котле. Настоящее изобретение, таким образом, является особенно полезным для проведения модернизации установки, но его можно также использовать в новых энергоблоках, например, чтобы регулировать температуру топочного газа, поступающего на катализатор восстановления NOx.

Представленное выше краткое описание, а также дополнительные задачи, отличительные особенности и преимущества настоящего изобретения станут более понятными после ознакомления со следующим подробным описанием предпочтительных в настоящее время, но, тем не менее, иллюстративных вариантов осуществления настоящего изобретения, рассматриваемых в сочетании с сопровождающими чертежами.

Краткое описание чертежей

Фиг.1 представляет схематическое изображение примерного энергетического котла согласно настоящему изобретению.

Фиг.2 представляет часть канала топочного газа энергетического котла согласно другому варианту осуществления настоящего изобретения.

Подробное описание изобретения

Фиг.1 представляет схематическое изображение сжигающему порошкообразный уголь энергетического котла 10 согласно настоящему изобретению. Котел включает печь 12 с горелкой для введения в печь смеси порошкообразного угля 16 и первичного воздуха 18 из угольной мельницы 20. Как правило, энергетический котел включает множество горелок, но для простоты на фиг.1 представлена только одна горелка. Топливо сжигают в печи, используя первичный воздух и вторичный воздух 22, поступающий в печь через дутьевой короб 24 вблизи горелки, и образуется горячий топочный газ. Сгорание можно на практике осуществлять полностью, используя третичный воздух и/или двухступенчатое сжигание топлива с введением воздуха в печь ниже по потоку относительно горелок, но для простоты на фиг.1 не представлено введение третичного воздуха и/или воздуха для двухступенчатого сжигания топлива. Образующиеся горячие топочные газы поднимаются внутри печи, отдавая часть своей энергии испарительным поверхностям 30 на стенках печи для испарения питательной воды 26 и получения пара 28. Топочный газ выходит из печи по каналу топочного газа 32, присоединенному к верхней части печи.

Топочные газы затем проходят через теплоутилизационную область (ТУО) 34 канала топочного газа, где они отдают дополнительную энергию поверхностям нагрева пароперегревателя 36 для перегрева образующегося пара и поверхностям экономайзера 38 для подогрева питательной воды, поступающей на испарительные поверхности. Как правило ТУО включает множество перегревающих и подогревающих поверхностей, но поскольку это не имеет решающего значения для настоящего изобретения, на фиг.1 представлен только один пароперегреватель 36.

Топочные газы, выходящие из экономайзера 38, проходят через катализатор 40 восстановления NOx, воздухоподогреватель 42, очищающую топочный газ систему 44 и вытяжную трубу 46 в атмосферу. Канал топочного газа 32 также включает инжектор 48 для введения восстановителя NOx, такого как аммиак, выше по потоку относительно катализатора 40. Катализатор 40 предпочтительно включает традиционный каталитический материал, такой как диоксид титана или оксид железа. Как правило, очищающая топочный газ система включает несколько очищающих топочный газ блоков, таких как пылеуловитель и десульфуратор, но поскольку это не имеет решающего значения для настоящего изобретения, на фиг.1 схематически представлена только одна очищающая газ система 44.

Согласно настоящему изобретению, канал топочного газа включает газовый воздухоподогреватель, в данном случае трубчатый воздухоподогреватель 50, установленный выше по потоку относительно катализатора 40 восстановления NOx. Используя трубчатый воздухоподогреватель, можно охлаждать топочный газ, насколько это желательно, до оптимального температурного интервала для катализатора, например до температуры, составляющей менее чем приблизительно 400°C.

Трубчатый воздухоподогреватель 50 преимущественно присоединен таким образом, чтобы обеспечивать возможное дополнительное нагревание вторичного воздуха 22. В некоторых вариантах осуществления можно также использовать трубчатый воздухоподогреватель для нагревания первичного воздуха 18 или третичного воздуха и/или воздуха для двухступенчатого сжигания топлива, который не представлен на фиг.1. Согласно предпочтительному варианту осуществления настоящего изобретения, трубчатый воздухоподогреватель 50 соединен параллельно с воздухоподогревателем 42, который здесь также называется термином «второй воздухоподогреватель» и который установлен в канале топочного газа 32 ниже по потоку относительно катализатора 40 восстановления NOx. Таким образом, поток вторичного воздуха из вторичной воздуходувки 52 можно разделять, используя регулирующие устройства, такие как регулирующие клапаны 54, 54', между трубчатым воздухоподогревателем 50 и воздухоподогревателем 42 ниже по потоку относительно катализатора 40.

Соотношение воздушных потоков через трубчатый воздухоподогреватель 50 и воздухоподогреватель 42 ниже по потоку относительно катализатора 40 можно преимущественно устанавливать в зависимости от нагрузки котла или в зависимости от температуры топочного газа выше по потоку относительно катализатора, которую измеряют определяющим температуру устройством, таким как термометр 56. Таким образом, система преимущественно включает регулятор 58 для управления регулирующими клапанами 54, 54' в зависимости от измеренной температуры.

Как правило, при высоких нагрузках, когда температура топочного газа выше по потоку относительно катализатора склонна увеличиваться и превышать оптимальную рабочую температуру катализатора, основную часть вторичного воздуха пропускают через трубчатый воздухоподогреватель 50 путем, по меньшей мере, частичного закрытого клапана 54', установленного на разветвлении линии вторичного воздуха, проходящей через воздухоподогреватель 42, установленный ниже по потоку относительно катализатора 40. Соответственно, при низких нагрузках меньшую часть вторичного воздуха пропускают через трубчатый воздухоподогреватель путем, по меньшей мере, частичного закрытия клапана 54, установленного на разветвлении питающей вторичным воздухом линии, проходящей через трубчатый воздухоподогреватель 50. Таким образом, путем регулирования разделения воздушного потока между трубчатым воздухоподогревателем 50 и воздухоподогревателем 42 ниже по потоку относительно катализатора 40 восстановления NOx можно оптимизировать температуру топочного газа, поступающего на катализатор восстановления NOx при различных режимах нагрузки.

Фиг.2 представляет часть канала топочного газа 32 энергетического котла согласно еще одному варианту осуществления настоящего изобретения. Газовый воздухоподогреватель 50' установлен в канале топочного газа выше по потоку относительно секции катализатора 40, и традиционный воздухоподогреватель 42 установлен ниже по потоку относительно секции катализатора 40. Согласно данному варианту осуществления, газовый воздухоподогреватель 50' включает охладитель 60 топочного газа в канале топочного газа 32 и отдельный воздухоподогреватель 62 на разветвлении 64 подающей воздух линии 66. Охладитель 60 топочного газа и воздухоподогреватель 62 соединены с помощью трубы 68 для циркуляции теплоносителя посредством насоса 70.

Хотя настоящее изобретение описано в данном документе посредством примеров в связи с тем, что в настоящее время считается наиболее предпочтительными вариантами осуществления, следует понимать, что настоящее изобретение не ограничено описанными вариантами осуществления, но предназначено для распространения на разнообразные сочетания или модификации своих отличительных особенностей и некоторые другие приложения, включенные в объем настоящего изобретения, которые определены в прилагаемой формуле изобретения.

Похожие патенты RU2543096C1

название год авторы номер документа
СИСТЕМА И СПОСОБ УПРАВЛЕНИЯ ВЫДЕЛЕНИЯМИ NO ИЗ КОТЛОВ, СЖИГАЮЩИХ УГЛЕРОДНЫЕ ТОПЛИВА, БЕЗ ИСПОЛЬЗОВАНИЯ ВНЕШНЕГО РЕАГЕНТА 2003
  • Фань Чжень
  • У Сун
RU2299758C2
УСТРОЙСТВО ДЛЯ НЕЙТРАЛИЗАЦИИ ТОКСИЧНЫХ КОМПОНЕНТОВ ДЫМОВЫХ ГАЗОВ БЕЗ ВВЕДЕНИЯ ВНЕШНЕГО РЕАГЕНТА 2022
  • Баландина Ольга Александровна
  • Пуринг Светлана Михайловна
  • Ватузов Денис Николаевич
RU2792608C1
КОТЕЛ НА ПОРОШКОВОМ ТОПЛИВЕ С РЕГЕНЕРАТИВНЫМ НАГРЕВАТЕЛЕМ РОТОРНОГО ТИПА 2013
  • Ву Даохон
  • Ван Шенмей
  • Чен Лин
  • Ву Юлин
  • Лу Гуанмин
  • Шен Дапин
RU2622139C2
СПОСОБ ПРОИЗВОДСТВА СЕРНОЙ КИСЛОТЫ 2007
  • Шубю Петер
RU2458857C9
Способ нейтрализации токсичных компонентов дымовых газов без введения внешнего реагента 2022
  • Баландина Ольга Александровна
  • Пуринг Светлана Михайловна
  • Ватузов Денис Николаевич
RU2796831C1
СПОСОБ КАТАЛИТИЧЕСКОГО КРЕКИНГА С УЛУЧШЕННЫМ ИСПОЛЬЗОВАНИЕМ ТЕПЛА ДЫМОВЫХ ГАЗОВ 2014
  • Фенье Фредерик
  • Бесно Жан-Мишель
  • Брио Патрик
RU2677893C2
НОСИТЕЛЬ КАТАЛИЗАТОРА, КАТАЛИЗАТОР И СПОСОБ ОБРАБОТКИ ДЫМОВОГО ГАЗА 2004
  • Хей Якоб Вайланд
  • Йоргенсен Клаус С.
RU2358801C2
СПОСОБ ПРОИЗВОДСТВА АММИАКА 2011
  • Астановский Дмитрий Львович
  • Астановский Лев Залманович
RU2445262C1
СПОСОБ УДАЛЕНИЯ SO ИЗ ТОПОЧНЫХ ГАЗОВ ИЗ ПАРОВОГО КОТЛА 2012
  • Шоубие Петер
RU2604746C2
Энерготехнологический агрегат 1981
  • Кигель Леонид Симхович
  • Емельянов Юрий Алексеевич
  • Гладышев Анатолий Николаевич
  • Добрынин Виталий Васильевич
  • Ситникова Нина Кузьминична
  • Старков Виктор Иванович
SU1044938A1

Иллюстрации к изобретению RU 2 543 096 C1

Реферат патента 2015 года СПОСОБ И УСТРОЙСТВО ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ NO В ЭНЕРГЕТИЧЕСКОМ КОТЛЕ

Изобретение относится к энергетике и может использоваться при регулировании температуры топочного газа, поступающего на катализатор восстановления оксидов азота в котлах. Предложен способ селективного каталитического восстановления NOx в энергетическом котле и энергетический котел с селективным каталитическим восстановлением NOx. Поток топочного газа, содержащий NOx, выходит из печи по каналу топочного газа в вытяжную трубу и охлаждается в теплоутилизационной области, включающей секцию экономайзера, расположенную в канале топочного газа. По меньшей мере, часть NOx восстанавливается до N2 на катализаторе восстановления NOx, находящемся в канале топочного газа ниже по потоку относительно секции экономайзера. Энергетический котел включает дополнительный воздухоподогреватель, установленный в канале топочного газа ниже по потоку относительно катализатора восстановления NOx, при этом газовый воздухоподогреватель и дополнительный воздухоподогреватель соединены параллельно. 2 н. и 10 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 543 096 C1

1. Способ селективного каталитического восстановления NOx в энергетическом котле (10), причем данный способ включает следующие стадии:
(a) сгорание топлива в печи (12) котла и образование потока топочного газа, который содержит NOx;
(b) прохождение потока топочного газа из печи по каналу (32) топочного газа в вытяжную трубу (46);
(c) охлаждение потока топочного газа в теплоутилизационной области (34), включающей секцию экономайзера (38), которая расположена в канале топочного газа;
(d) восстановление, по меньшей мере, части NOx до N2 на катализаторе (40) восстановления NOx, находящемся в канале топочного газа ниже по потоку относительно секции экономайзера; и
(e) дополнительное охлаждение топочного газа и образование нагретого воздуха в газовом воздухоподогревателе (50), установленном в канале топочного газа ниже по потоку относительно секции экономайзера и выше по потоку относительно катализатора восстановления NOx,
причем энергетический котел включает дополнительный воздухоподогреватель (42), установленный в канале топочного газа ниже по потоку относительно катализатора восстановления NOx, и данный способ отличается тем, что газовый воздухоподогреватель и дополнительный воздухоподогреватель соединены параллельно
относительно воздушного потока.

2. Способ по п.1, в котором газовый воздухоподогреватель (50) присоединен к воздушному потоку для получения нагретого воздуха, поступающего в качестве вторичного воздуха в горелку (14), расположенную в печи.

3. Способ по п.1, дополнительно включающий стадию регулирования потока воздуха, поступающего в газовый воздухоподогреватель (50), в зависимости от режима нагрузки энергетического котла.

4. Способ по п.1, дополнительно включающий стадии измерения температуры топочного газа, поступающего на катализатор (40) восстановления NOx, и регулирования потока воздуха, поступающего в газовый воздухоподогреватель (50), в зависимости от измеренной температуры.

5. Способ по п.1, в котором газовый воздухоподогреватель (40) представляет собой трубчатый воздухоподогреватель.

6. Способ по п.1, в котором газовый воздухоподогреватель представляет собой теплообменник (50') с рециркулирующим теплоносителем.

7. Энергетический котел (10) с селективным каталитическим восстановлением NOx, причем данный котел включает:
(a) топочную камеру для сжигания топлива в печи (12) котла и получения в результате этого потока топочного газа, содержащего NOx;
(b) канал (32) топочного газа для прохождения потока топочного газа из печи в вытяжную трубу (46);
(с) теплоутилизационную область (34), включающую секцию экономайзера (38), установленную в канале топочного газа для охлаждения потока топочного газа;
(d) катализатор (40) восстановления NOx, находящийся в канале топочного газа ниже по потоку относительно секции экономайзера, для восстановления, по меньшей мере, части NOx до N2; и
(e) газовый воздухоподогреватель (50), установленный в канале топочного газа ниже по потоку относительно секции экономайзера и выше по потоку относительно катализатора восстановления NOx, для дополнительного охлаждения топочного газа и получения нагретого воздуха,
причем энергетический котел включает дополнительный воздухоподогреватель (42), установленный в канале топочного газа ниже по потоку относительно катализатора восстановления NOx, и отличается тем, что газовый воздухоподогреватель и дополнительный воздухоподогреватель соединены параллельно относительно воздушного потока.

8. Энергетический котел по п.7, в котором топочная камера для сжигания топлива включает горелку (14), и газовый воздухоподогреватель (50) присоединен к воздушному каналу для прохождения нагретого воздуха в печь в качестве вторичного воздуха вблизи горелки.

9. Энергетический котел по п.7, дополнительно включающий регулятор (58) для регулирования потока воздуха, поступающего в газовый воздухоподогреватель (50), в зависимости от режима нагрузки энергетического котла.

10. Энергетический котел по п.7, дополнительно включающий
термометр (56) для измерения температуры топочного газа, поступающего на катализатор (40) восстановления NOx, и регулятор (58) для регулирования потока воздуха, поступающего в газовый воздухоподогреватель (50), в зависимости от измеренной температуры.

11. Энергетический котел по п.7, в котором газовый воздухоподогреватель (50) представляет собой трубчатый воздухоподогреватель.

12. Энергетический котел по п.7, в котором газовый воздухоподогреватель (50') представляет собой теплообменник с рециркулирующим теплоносителем.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543096C1

СПОСОБ РАБОТЫ И УСТРОЙСТВО ТЕПЛОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С КОМПЛЕКСНОЙ СИСТЕМОЙ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛОТЫ И СНИЖЕНИЯ ВРЕДНЫХ ВЫБРОСОВ В АТМОСФЕРУ 2000
  • Акчурин Х.И.
  • Язовцев В.В.
  • Цой Е.Н.
RU2179281C2
RU 2003000 C1, 15.11.1993
Способ сжигания топлива и теплоиспользующая установка 1989
  • Гайстер Юрий Самуилович
  • Болдин Александр Николаевич
  • Заслонко Игорь Степанович
  • Зельцер Владимир Львович
  • Здасюк Сергей Георгиевич
  • Кривоконь Александр Александрович
  • Лобзин Игорь Романович
  • Носач Вильям Григорьевич
  • Чепиков Владимир Алексеевич
  • Чмель Валерий Николаевич
SU1726898A1
JP 55070328 A, 27.05.1980
US 5078973 A, 07.01.1992

RU 2 543 096 C1

Авторы

Гринхат Дэвид

Элстон Джон

Маццолла Майкл

Эдвардс Альфред

Даты

2015-02-27Публикация

2012-03-02Подача