Предлагаемое изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения.
Известен «Способ получения газобетона», описанный в патенте РФ №2465252, МПК C04B 40/00, C04B 38/02, заявл. 12.05.2011, опубл. 27.10.2011.
Известный способ включает приготовление растворной смеси из портландцемента, молотого кварцевого песка, гипса и воды, которое осуществляют в смесителе. Затем производят ультразвуковую обработку смеси. После этого в бетонной смеси формируют резонаторные центры в виде отдельных скоплений тонкодисперсных частиц, для чего в смесь вносят неочищенную алюминиевую пудру и перемешивают со скоростью вращения лопастей 180 об/мин. Затем повторно производят ультразвуковую обработку смеси и вносят в нее очищенную алюминиевую пудру и опять перемешивают со скоростью 620 об/мин.
К недостаткам данного способа также можно отнести его дороговизну и сложность из-за необходимости неоднократной ультразвуковой обработки смеси (это потребует наличия специального оборудования), трудности с приготовлением больших объемов смеси (сложный двухскоростной смеситель имеет ограниченный объем). Использование очищенной алюминиевой пудры также усложняет и удорожает процесс, поскольку процесс очищения пудры от парафина и необходимость использования специальных химических компонентов существенно усложняет процесс. К такому же результату приводит необходимость использования алюминиевых опилок, которые изготавливаются отдельно. Как следствие, данный способ делает практически невозможным приготовление газобетона непосредственно на стройках.
Известен также «Способ изготовления ячеистого бетона», описанный в патенте РФ №2253636, МПК C04B 40/00, C04B 38/02, заявл. 26.12.2003, опубл. 10.06.2005.
Данный способ осуществляют следующим образом:
В кавитационный смеситель с активатором подают воду и цемент или воду, цемент и песок и все компоненты перемешивают в течение 5-15 минут. Затем в полученный раствор вводят заранее приготовленную сухую порообразующую смесь и еще раз производят перемешивание в течение 15-60 секунд.
Недостатком данного способа, как и предыдущих, является, во-первых, необходимость использования специального кавитационного смесителя, который имеет небольшой объем (не более 1м3), а во-вторых, сложность приготовления бетонной смеси на месте строительства, сложность контроля качества сырья в условиях стройки, трудности с подачей бетонной смеси на этажи, с перемещением оборудования при высотном строительстве.
Наиболее близким по технической сущности и достигаемому результату к нашему изобретению является «Сухая смесь для производства ячеистого фибробетона», патент США №20120041087 от 16.02.2012.
Данная сухая смесь, содержащая цемент, минеральный наполнитель, микрокремнезем, суперпластификатор, фибру, порообразователь, дополнительно содержит модифицирующую цеолитовую добавку и проходит дополнительно измельчение-активацию в механоактиваторах.
Компоненты смеси находятся в следующих соотношениях:
Портландцемент 20 - 100 %,
Минеральный наполнитель 20 - 70 %,
Микрокремнезем 2 - 10 %,
Суперпластификатор 0,6 - 3 %,
Модифицирующая цеолитовая добавка 2 - 10 %.
Полипропиленовая фибра для бетонов длиной до 12 мм - до 1,5 кг на 1 м3.
Порообразователь 0,002 - 0,65 %.
К недостаткам данного изобретения можно, на наш взгляд, отнести следующее: во-первых, двойное перемешивание смеси с использованием алюминиевой пудры небезопасно, а во-вторых, одновременное перемешивание всех компонентов, включая порообразователь, может привести к неоднородности смеси, что может отрицательно сказаться на структурно-механических свойствах ячеистого бетона.
Целью создания изобретения является получение однородной равномерной массы с улучшенными структурно-механическими свойствами: с повышенными прочностью, морозостойкостью, с уменьшенным объемным весом. Попутной не менее важной целью является приготовление сухой смеси для производства композиционного ячеистого бетона для последующего ее использования в любом месте строительства по принципу: «просто разбавь водой».
Поставленная цель достигается тем, что в полученный состав дополнительно вводят цеолитовую добавку, приготовленную путем предварительного перемешивания одно- или многослойных нанотрубок в воде посредством атомайзера в распыленном виде с последующим их перемешиванием с цеолитом в смесителе циклического действия, а также вводят предварительно отдельно приготовленную сухую порообразующую смесь, состоящую из сухого пенообразователя, алюминиевой пудры ПАП-2 и алюминиевой пудры ПАП-1, после чего в общий смеситель подают такие компоненты состава сухой смеси при следующем их соотношении, кг, как: цемент 600, зола-унос ТЭЦ 400, микрокремнезем МКУ 50, суперпластификатор С-3 9, олеат натрия 3, глюконат натрия 1,5, адимент СТ-2 2, биоцидная добавка Ластонокс 2, фибра 1,5, полимерная добавка 5, указанная сухая порообразующая смесь 20, указанная цеолитовая добавка, содержащая одно- или многослойные нанотрубки, 50, после чего полученный в результате совместного перемешивания общий состав подвергают ударной механоактивации на УДА-установках.
Новым в заявленном способе является то, что в процессе приготовления смеси используют сухую порообразующую смесь, состоящую из сухого пенообразователя, алюминиевой пудры ПАП-2 и алюминиевой пудры ПАП-1, причем порообразующую смесь готовят отдельно, а также используют цеолитовую добавку, приготовленную также отдельно путем предварительного перемешивания одно- или многослойных нанотрубок в воде посредством атомайзера в распыленном виде с последующим их перемешиванием с цеолитом в смесителе циклического действия. После этого все компоненты смеси, включающие: цемент 600, зола-унос ТЭЦ 400, микрокремнезем МКУ 50, суперпластификатор С-3 9, олеат натрия 3, глюконат натрия 1,5, адимент СТ-2 2, биоцидная добавка Ластонокс 2, фибра 1,5, полимерная добавка 5, указанную выше сухую порообразующую смесь 20, указанную цеолитовую добавку, содержащую одно- или многослойные нанотрубки, 50, перемешивают в смесителе (любой смеситель для производства сухих смесей) для получения однородной смеси, а затем общий состав подвергают ударной механоактивации на УДА-установках.
Вводимая в смесь цеолитовая добавка состоит из комбинации цеолита, в свою очередь состоящего из тетраэдров SiO2 и AlO4, соединенных вершинами в ажурные каналы, в полостях и каналах которых находятся катионы и молекулы H2O, и углеродных нанотрубок, полученных путем газофазного химического осаждения газообразных углеводородов на катализаторах (Ni/Mg) при атмосферном давлении. Углеродные нанотрубки и цеолиты, находясь в смеси при измельчении-активации в механоактиваторе (DESI-18 производства Desintegraator Tootmise OÜ, Эстония) и располагаясь на поверхностях фрагментов наполнителя в поляризованном состоянии, направленно воздействуют на процесс образования кристаллогидратов, фрормируя при этом фибриллярные микроструктуры многомикронного порядка.
Вводимая в смесь сухая порообразующая смесь состоит из сухого пенообразователя (типа ОСБ или белкового пенообразователя «Биопор»), и комплексного порообразователя, состоящего из пудр алюминиевых марок ПАП-1 и ПАП-2. Порообразователи предварительно смешиваются в пропорции 50/50 пенообразователь/газообразователь.
О других применяемых в процессе осуществления способа компонентах смеси:
- Суперпластификатор С-3. Основу суперпластификатора С-3 составляют соли продукта конденсации нафталинсульфокислоты и формальдегида. Суперпластификатор С-3 производится в жидкой и сухой форме в виде водорастворимого порошка светло-коричневого цвета или водного раствора темно-коричневого цвета, имеющего концентрацию не менее 32%. При хранении не выделяет вредных газов или паров.
- Биоцидная добавка - ластонокс является продуктом конденсации хлорметильных производных ароматических углеродов с пиридином. Вводится в состав сухих смесей.
- Адимент СТ-2 - белковый стабилизатор пор.
Кроме того, в процессе изготовления смеси используется фибра полипропиленовая с длиной до 12 мм.
Последующая обработка композиции сухой смеси путем тщательного перемешивания всех компонентов в смесителе (любой смеситель для производства сухих смесей) для получения однородной смеси, а затем ее активации по УДА (ударный дезинтегратор-активатор), технологии на повышенных скоростях в механоактиваторе способствуют улучшению физико-механических характеристик получаемого композиционного ячеистого бетона за счет повышения его однородности, равномерности распределения пор. При этом почти в полтора раза увеличиваются прочность и скорость затвердевания, уменьшается его объемный вес (250-300 кг/м3).
Пример осуществления способа:
Сухая смесь, которую получают в результате осуществления данного способа, включает следующие компоненты, кг:
- цемент марки СЕМ 1 42.5 N - 600
- зола-унос Рязанской ТЭЦ - 400
- микрокремнезем МКУ - 50
- суперпластификатор - С-3 9
- олеат натрия - 3
- глюконат натрия - 1,5
- адимент СТ-2 - 2
- биоцидная добавка Ластонокс - 2
- фибра - 1,5
- полимерная добавка - 5
- сухая порообразующая смесь - 20
- цеолитовая добавка, содержащая одно- или многослойные нанотрубки - 50.
Готовят сухую смесь следующим образом: исходный материал (цемент, зола-унос, микрокремнезем, суперпластификатор, олеат натрия, биоцидная добавка и фибра) подают в бункера предварительного хранения.
Порообразователь перед подачей в смеситель готовят отдельно: тщательно дозируют и подают в смеситель циклического действия в следующей последовательности: сухой пенообразователь; алюминиевая пудра ПАП-2; алюминиевая пудра ПАП-1.
Все компоненты порообразователя тщательно перемешивают; его масса при внесении в общую смесь должна составлять не более 20 кг на тонну сухой смеси.
Также отдельно готовят цеолитовую добавку, для чего в смеситель циклического действия подают отдозированный материал в следующей последовательности: цеолит, а затем, после предварительного перемешивания в воде, в распыленном с помощью атомайзера виде подают одно или многослойные нанотрубки. Масса модифицированной цеолитовой добавки должна составлять 50 кг.
После вышеперечисленных манипуляций в смеситель подают порообразователь и вяжущее (адимент, глюконат натрия и полимерную добавку) и осуществляют их перемешивание. В этот же смеситель загружают наполнитель, добавки (биоцидную, модифицированную цеолитовую) и фибру, и вновь все тщательно перемешивают для получения однородной смеси. Затем смесь, прошедшую стадию предварительного перемешивания, подают в приемный бункер, после чего ее подвергают ударной механоактивации на УДА установках. В результате происходит воздействие на процесс образования кристаллогидратов, процесс формирования фибриллярных микроструктур многомикронного порядка.
После этого готовый материал подают в емкости хранения для выдержки перед отгрузкой потребителю.
Перед использованием сухую смесь затворяют водой с водотвердым отношением 0.45, т.е. на 100 кг сухой смеси добавляют 45 литров воды и тщательно перемешивают.
На 28 сутки ячеистый бетон имеет следующие характеристики:
- объемный вес в среднем - 500 кг/м3; прочность на сжатие - 32 кг/см2;
- теплопроводность - 0.12;
- морозостойкость - после 35 циклов не разрушается.
Предлагаемый способ позволяет обеспечить существенную экономию из-за отсутствия автоклавной обработки и возможности не применять пропарку и прогрев. Сухую смесь, полученную нашим способом, можно использовать непосредственно на месте строительства по принципу «разбавь водой». Данный способ позволяет использовать имеющиеся механизмы и машины, предназначенные для перемешивания и подачи бетонных смесей и растворов на местах строительства (пример: Бетононасос EstrichBoy DC260/45).
название | год | авторы | номер документа |
---|---|---|---|
СУХАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА КОМПОЗИЦИОННОГО ЯЧЕИСТОГО БЕТОНА | 2013 |
|
RU2552730C2 |
Способ приготовления сухой смеси для производства ячеистого бетона | 2020 |
|
RU2737608C1 |
СУХАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА ЯЧЕИСТОГО ГАЗОФИБРОБЕТОНА | 2008 |
|
RU2394007C2 |
Способ производства сухих строительных смесей | 2019 |
|
RU2735004C1 |
ИЗДЕЛИЕ ИЗ ЯЧЕИСТОГО БЕТОНА АВТОКЛАВНОГО ТВЕРДЕНИЯ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ, СМЕСЬ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСИ | 2018 |
|
RU2681166C1 |
СУХАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА (ВАРИАНТЫ) | 2013 |
|
RU2547532C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ ЯЧЕИСТОГО БЕТОНА | 2006 |
|
RU2338723C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ СЫРЬЕВОЙ СМЕСИ ДЛЯ ЯЧЕИСТОГО БЕТОНА | 2011 |
|
RU2472753C1 |
ПОРОБЕТОН | 2005 |
|
RU2297993C1 |
СОСТАВ СМЕСИ ДЛЯ ПРОИЗВОДСТВА ПОРОБЕТОНА | 2010 |
|
RU2416588C1 |
Изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения. В способе приготовления смеси для производства композиционного ячеистого бетона, включающем подачу в смеситель компонентов состава и их перемешивание для получения однородной массы, введение в полученный состав сухой порообразующей смеси и последующее совместное перемешивание, в полученный состав дополнительно вводят цеолитовую добавку, приготовленную путем предварительного перемешивания одно- или многослойных нанотрубок в воде посредством атомайзера в распыленном виде с последующим их перемешиванием с цеолитом в смесителе циклического действия, а также вводят предварительно приготовленную сухую порообразующую смесь, состоящую из сухого пенообразователя, алюминиевой пудры ПАП-2 и алюминиевой пудры ПАП-1, после чего в общий смеситель подают компоненты сухой смеси при следующем соотношении, кг: цемент 600, зола-унос ТЭЦ 400, микрокремнезем МКУ 50, суперпластификатор С-3 9, олеат натрия 3, глюконат натрия 1,5, адимент СТ-2 2, биоцидная добавка Ластонокс 2, фибра 1,5, полимерная добавка 5, указанная сухая порообразующая смесь 20, указанная цеолитовая добавка, содержащая одно- или многослойные нанотрубки, 50, после чего полученный в результате совместного перемешивания общий состав подвергают ударной механоактивации на УДА-установках. Технический результат - получение однородной сухой смеси, снижение объемного веса, повышение прочности и морозостойкости неавтоклавного ячеистого бетона, полученного из заявленной сухой смеси. 1 пр.
Способ приготовления смеси для производства композиционного ячеистого бетона, заключающийся в подаче в смеситель компонентов состава и их перемешивании для получения однородной массы, введении в полученный состав сухой порообразующей смеси и последующем совместном перемешивании, отличающийся тем, что в полученный состав дополнительно вводят цеолитовую добавку, приготовленную путем предварительного перемешивания одно- или многослойных нанотрубок в воде посредством атомайзера в распыленном виде с последующим их перемешиванием с цеолитом в смесителе циклического действия, а также вводят предварительно приготовленную сухую порообразующую смесь, состоящую из сухого пенообразователя, алюминиевой пудры ПАП-2 и алюминиевой пудры ПАП-1, после чего в общий смеситель подают такие компоненты состава сухой смеси при следующем их соотношении, кг, как: цемент 600, зола-унос ТЭЦ 400, микрокремнезем МКУ 50, суперпластификатор С-3 9, олеат натрия 3, глюконат натрия 1,5, адимент СТ-2 2, биоцидная добавка Ластонокс 2, фибра 1,5, полимерная добавка 5, указанная сухая порообразующая смесь 20, указанная цеолитовая добавка, содержащая одно- или многослойные нанотрубки, 50, после чего полученный в результате совместного перемешивания общий состав подвергают ударной механоактивации на УДА-установках.
US 20120041087 А1, 16.02.2012 | |||
СУХАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА ЯЧЕИСТОГО ГАЗОФИБРОБЕТОНА | 2008 |
|
RU2394007C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ СЫРЬЕВОЙ СМЕСИ ДЛЯ ЯЧЕИСТОГО БЕТОНА | 2011 |
|
RU2472753C1 |
ПОРОБЕТОН | 2005 |
|
RU2297993C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 2000 |
|
RU2233254C2 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЯЧЕИСТОГО БЕТОНА | 1993 |
|
RU2073661C1 |
ЭЛЕКТРИЧЕСКАЯ ЗАПАЛЬНАЯ СВЕЧА ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО ГОРЕНИЯ | 1927 |
|
SU16486A1 |
СПОСОБ КОРМЛЕНИЯ ЖИВОТНЫХ И ПТИЦЫ | 2017 |
|
RU2654095C1 |
Авторы
Даты
2015-03-10—Публикация
2013-07-05—Подача