СПОСОБ УНИЧТОЖЕНИЯ ТРИНИТРОТОЛУОЛА Российский патент 2015 года по МПК B01J8/00 B01J19/10 A62D3/00 C07C205/06 

Описание патента на изобретение RU2544678C2

Изобретение относится к области химической технологии энергонасыщенных материалов, а именно к способам утилизации отходов производства, бракованного и просроченного продукта. Способ пригоден для лабораторного и промышленного применения и может быть реализован на практике в ультразвуковых химических реакторах для утилизации разного вида отходов.

При производстве и захоронении энергонасыщенных материалов и взрывчатых веществ (ВВ) существует реальная опасность загрязнения окружающей среды. При фитоочистке могут образоваться более токсичные, чем загрязнитель, производные. Восстановление нитрогрупп характерно для микроорганизмов. Тринитротолуол (ТНТ) - чрезвычайно устойчивое вещество и обладает токсическими свойствами (ПДК в рабочей зоне от 0,1 до 0,5 мг/м3, в населенном пункте от 0,0007 до 0,3 мг/м3, в водоеме от 0,1 до 0,5 мг/м3). Тринитротолуол и сопутствующие взрывчатые вещества квалифицируются US ЕРА как возможные канцерогены. Сравнительная токсикологическая оценка химических стандартов ТНТ и его метаболитов (гидроксиламинодинитротолуолов (ГА) и гидридного комплекса Мейзенгеймера (Н-ТНТ) показала, что ГА являются наиболее токсичными. В процессе биологического разложения ТНТ при исследовании микроорганизмов: Paramecium caudatum, Candida sp.AN-L13, Saccharomyces sp. SZ-A1, установлен их высокий уровень смертности вследствие высокой токсичности даже небольших количеств ГА [1]. Токсикологическое тестирование свидетельствует о важной роли пути превращения ТНТ через восстановление ароматического кольца, которое позволяет избежать образования высокотоксичных продуктов, ответственных за сокращение видового разнообразия микроорганизмов почвы. Для утилизации промышленных сточных вод, содержащих ТНТ, используются комбинированные методы: первый этап - физико-химическая переработка (использование дорогостоящих химических реагентов окисления и восстановления) [2], использование высокой температуры, использование электрохимического и ферментативного разложений [3], фотохимического, ультрафиолетового и ультразвукового воздействия [4, 5]; второй этап - биологическая деградация полупродуктов разложения первого этапа [4,6].

Из используемых на практике, наиболее близким по технической сущности к предлагаемому является способ уничтожения тринитротолуола [7, прототип]. Способ уничтожения тринитротолуола по [7] заключается в воздействии на него в водной среде щелочными химическими реагентами - водными растворами сульфита натрия и гидроокиси натрия с концентрацией 5-20%, при весовом соотношении тринитротолуол-химический реагент 3-30 с одновременным нагреванием.

На практике уничтожение тринитротолуола в лабораторных условиях осуществляют, например, в 20 %-ном растворе сульфита натрия при температуре 100°C в течение 30 минут. Образуются растворимые в воде органические продукты красного цвета, не содержащие тротила. Углубленного исследования химизма процесса не проводилось, но установлено, что продуктами химического превращения являются не взрывчатые вещества, а предположительно продукты неполного восстановления нитрогруппы. Высокая реакционная способность сульфита натрия Na2SO3 в реакциях взаимодействия с тринитротолуолом связана с его амфотерными свойствами. Взаимодействуя с α-ТНТ как щелочь, на первой стадии сульфит натрия превращает его в неустойчивое комплексное соединение хиноидного строения. Из литературы известно, что нитрогруппа в ациформе значительно легче подвергается восстановлению. На второй стадии сульфит натрия восстанавливает циклогексановое комплексное соединение до толуолтриимино-сульфомината натрия. Учитывая селективность действия серосодержащих восстановителей, относительно нитрогруппы параположения, возможно и более глубокое превращение толуолтрииминосульфомината - в парааминотолуолдииминосульфоминат натрия. Химизм процесса уничтожения по способу [7] поясняется на фигуре 1, без применения ультразвука (УЗ).

Конечными продуктами химического разложения ТНТ сульфитом натрия, без воздействия УЗ, являются растворимые в воде полупродукты восстановления-присоединения (фиг. 1, без УЗ) [7].

Применение гидроокиси калия для химического разложения ТНТ неприемлемо, так как при кипячении в ее водных растворах образуется высокочувствительное ВВ с выходом 70-80% [7].

При реализации способа по [7] используется концентрированный 15-20%-ный водный раствор сульфита натрия (фиг. 2), необходимо нагревание при температуре не менее 95°C в течение не менее 30 минут (фиг. 3). Таким образом, скорость химического уничтожения ТНТ мала, а продукты разложения содержат значительное количество растворимых в воде органических солей, обладающих токсическими свойствами, что делает способ неприемлемым в полупромышленных и промышленных условиях.

Получаемый в условиях ведения процесса полупродукт хиноидного строения достаточно стабилен и способен вступать в реакцию с серосодержащим активным восстановителем нитрогруппы (фиг. 1, без УЗ), и образование этих полупродуктов: в гидроокисях натрия и калия - взрывоопасных; в сульфите натрия - токсичных, делает этот способ не пригодным для последующей биодеградации.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка способа уничтожения тринитротолуола, способного реально работать в промышленных и полупромышленных условиях и в результате которого происходит снижение токсичности продуктов химического разложения за счет обеспечения высокой скорости деструкции молекулы нестабильного комплексного соединения, образующегося в щелочной среде, и, тем самым, предотвращение протекания нежелательных реакций восстановления нитрогруппы и неселективного восстановления ароматического кольца до циклогексана.

В способе уничтожения тринитротолуола, заключающемся в воздействии на него в водной среде щелочными химическими реагентами - водными растворами сульфита натрия и гидроокиси натрия с концентрацией 5-20%, при весовом соотношении тринитротолуол:химический реагент: 1:3-30, одновременно с воздействием химического реагента осуществляют воздействие ультразвуковыми колебаниями с частотой не ниже 20 кГц и интенсивностью не менее 2,5 Вт/см2, обеспечивая введение в обрабатываемый объем не менее 50 Вт акустической энергии на один литр обрабатываемой среды, при начальной температуре реакционной смеси 40-50°C нагрев осуществляют за счет поглощения энергии УЗ-колебаний до температуры не выше 80-85°C.

Использование реакции химического превращения тринитротолуола в щелочных средах (водные растворы сульфита натрия и гидроокиси натрия) с одновременным воздействием ультразвуковых колебаний частотой более 20,0 кГц, с интенсивностью не менее 2,5 Вт/см2 обеспечивает эффект кавитационного воздействия на молекулу нестабильного промежуточного комплекса и ее деструкцию (фиг. 1, УЗ).

Для практической реализации предлагаемого способа разработана лабораторная установка, схематично показанная на фиг. 4, где приняты следующие обозначения: 1 - штатив; 2 - излучатель ультразвуковых колебаний; 3 - стеклянный стакан (250 мл); 4 - электрический кабель; 5 - электронный генератор аппарата «Волна-М», модель УЗТА-1/22-ОМ.

На фиг. 5 показан внешний вид ультразвукового аппарата «Волна-М», модели УЗТА-1/22-ОМ с потребляемой мощностью 1000 ВА, разработанного и изготовленного малым инновационным предприятием ООО «Центр ультразвуковых технологий АлтГТУ [8].

В комплектацию аппарата «Волна-М», модели УЗТА-1/22-ОМ входят электронный генератор и ультразвуковая пьезоэлектрическая колебательная система в металлическом корпусе с принудительным или естественным воздушным охлаждением. Электронный генератор выполнен на современной элементной базе, имеет микропроцессорное управление, плавный регулятор выходной мощности, таймер, систему АПЧ, многорежимный цифровой индикатор отображаемых параметров. Ультразвуковая колебательная система построена на пьезоэлектрических кольцевых элементах и изготовлена из титанового сплава ВТ5 (диаметр рабочего инструмента d=45 мм). Применялся сравнительно слабый ультразвуковой излучатель с максимальной интенсивностью 5 Вт/см2 с рабочей частотой (20±1,65) кГц.

Способ реализовывался следующим образом.

В стакан емкостью 250 мл помещают 3 г ТНТ, 90 мл водного раствора сульфита натрия Na2SO3. Полученную суспензию при перемешивании нагревают на водяной бане до 50°C. Затем в раствор помещают излучатель ультразвука. На ультразвуковой установке устанавливают заданную мощность УЗ (Рэл), продолжительность озвучивания от 5 до 30 минут. При Рэл=50, 75 и 100 Вт расчетное значение интенсивности ультразвука (УЗ) составляет соответственно 2,5, 3,5 и 4,7 Вт/см2. Конечная температура рабочего раствора от 80 до 85°C.

Характер зависимости конверсии (возврата) тринитротолуола от концентрации сульфита натрия Na2SO3 в одинаковых условиях разложения с применением УЗ и без УЗ показан на фиг. 6. Как видно из графика зависимости конверсии тринитротолуола от концентрации водного раствора сульфита натрия, в интервале 5-20% наблюдается полное разложение продукта при ультразвуковом воздействии в 10%-ном растворе сульфита (фиг. 6, кривая 1). При концентрации меньше 5%, например 2,5%, возврат (конверсия) составляет 20%. Для снижения времени разложения, то есть для увеличения интенсивности процесса и производительности установки, могут использоваться два приема: первый - увеличение концентрации реагентов разложения (сульфита натрия или гидроокиси натрия) до концентрации 20% (более высокая концентрация экономически нецелесообразна); второй - увеличение интенсивности ультразвукового воздействия (фиг. 7). Исследуемый интервал концентраций сульфита натрия и гидроокиси натрия от 5% до 20% соответствует весовому соотношению тринитротолуол:химический реагент как 1:3-30.

При использовании УЗ-воздействия с минимальной заданной мощностью Рэл=50 Вт, при интенсивности 2,5 Вт/см2 за 30 минут разложение ТНТ происходит эффективно в интервале концентрации сульфита натрия Na2SO3 от 2,5% до 10,0%, возврат продукта составляет соответственно от 10% до 0% (кривая 1). В тех же условиях без применения УЗ-воздействия, но при нагревании до 95°C за 30 минут, возврат тринитротолуола составляет около 30%, полное его уничтожение достигается в растворе 20%-ной концентрации (кривая 2). При озвучивании реакционной смеси ее конечная температура за счет аккумуляции энергии УЗ возрастает и зависит от концентрации щелочи. Например (фиг. 6, кривая 1): при увеличении концентрации сульфита натрия 2,5 до 10% конечная температура в реакторе возрастает с комнатной до 50°C и 70°C соответственно.

Как видно из фиг. 6, процесс разложение тринитротолуола под УЗ-воздействием происходит при более низкой концентрации сульфита натрия, чем при его разложении химическим методом.

Увеличение заданной мощности УЗ до 75 Вт приводит к снижению времени разложения ТНТ в водном растворе сульфита натрия до 5 минут в 20%-ном и до 10 минут в 10%-ном сульфите натрия. Полученные результаты макрокинетического исследования конверсии тринитротолуола в водных растворах Na2SO3 - 5, 10 и 20%-ной концентрации представлены на фиг. 7. Из фиг. 6, 7 видно, что увеличение мощности УЗ-воздействия позволяет снизить концентрацию химического реагента и значительно интенсифицировать процесс разложения.

Была проведена серия опытов по разложению тринитротолуола в 5%-ном водном растворе гидроокиси натрия NaOH. Исследования показали, что воздействие УЗ мощностью 100 Вт при начальной температуре Тнач=40-50°C приводит к разложению тротила за 6 минут (таблица 1). При Тнач=20°C время разложения τ≥9 мин, конечная температура реакционной среды Ткон=80°C достигается за счет аккумуляции энергии ультразвука I=3,5-4,7 Вт/см2.

Представленные в таблице 1 температурные условия ведения процесса Тнач=40-50°C, Ткон=80-85°C лежат в интервале допустимых погрешностей экспериментов, связанных с объективными условиями - колебаниями температуры окружающей среды.

В щелочной среде происходит превращение ароматической структуры молекулы с образованием комплекса хиноидного строения с неустойчивыми двойными связями углерод-азот C=N, которые интенсивно разрушаются под действием УЗ. Ароматическое кольцо при этом превращается в циклогексановое кольцо, не обладающее отравляющими свойствами для микроорганизмов, на этом основана биологическая очистка сточных вод тротилового производства за рубежом [9].

Образующиеся ударные волны в микропустотах сплошной жидкой фазы при достаточной интенсивности и мощности воздействия УЗ вызывают цепное разложение и полную деструкцию молекулы взрывчатых веществ до элементов. В случае 100% протекания такого процесса в продуктах разложения не содержатся органические вещества, а только продукт окисления сульфита натрия - сульфат натрия, технология переработки которого используется в промышленности.

Методом ИК-спектроскопии в продуктах неполного разложения 2,4,6-тринитротолуола установлены следующие функциональные группы: - NH(3101,2см-1); СН(2885,4см-1); СН2(2885,4см-1; 1408см-1); СН3(2885,4см-1; 1408см-1); Ar(1605см-1; 1467,6см-1); C-N=O(1545,5см-1); N≡N+-(1545,5см-1); C-NO2(1350,2см-1); S=O(1087,5см-1); N-S=O(1087,5 см-1), что косвенно подтверждает предполагаемый химизм процессов взаимодействия 2,4,6-тринитротолуола с сульфитом натрия.

Проведенными исследованиями установлено, что при воздействии УЗ в определенных условиях происходит полное разложение тринитротолуола. Полученные в данной серии опытов растворы окрашены в черный цвет. После упаривания и сушки при температуре 90°C получен кристаллический мелкодисперсный порошок черного цвета, негорючий и не восприимчивый к удару. Термический анализ продукта проводился в атмосфере азота при температуре от 20 до 500°C. Термограмма продукта разложения тринитротолуола УЗ в 10%-ном растворе Na2SO3 показана на фиг. 8. Как видно из кривой DTA (дифференциально-термический анализ), продукт после разложения в 10%-ном растворе сульфита натрия содержит незначительное количество вещества, разлагающегося при температуре 175-204°C. Кривая TGA (термогравиметрический анализ) показывает убыль массы вещества с постоянной скоростью, что связано с дегидратацией десятигидрата сульфата натрия.

Аналогичные результаты получены при термическом анализе продукта, полученного после разложения в 5%-ном растворе гидроокиси натрия, Термограмма продукта разложения тринитротолуола УЗ в 5%-ном растворе NaOH показана на фиг. 9. Продукт содержит незначительные количества примеси с Тпл=110°C и вещества, разлагающегося при 200-300°C (кривая DTA).

Наличие незначительного количества органических примесей в продуктах разложения тротила в водных растворах сульфита натрия и гидроокиси натрия связано с тем, что для анализа использовался весь маточник после фильтрования продуктов полного разложения, полученный в каждой из двух серий от 30 до 40 опытов.

Способ уничтожения тринитротолуола воздействием ультразвука высокой интенсивности имеет потенциальный запас производительности применительно к укрупненным масштабам процесса. В настоящее время разработаны промышленные ультразвуковые реакторы идеального вытеснения со значительно большей мощностью акустического воздействия, применимые для реализации предлагаемого способа в производстве [8].

Применение ультразвукового воздействия в процессе химического разложения тринитротолуола значительно интенсифицирует процесс, кроме того, сонохимическая реакция превращения тринитротолуола протекает по иному механизму, чем при химическом разложении, изучение которого представляет теоретический и практический интерес.

Таким образом, достоинствами метода разложения тринитротолуола в щелочных средах с применением ультразвука высокой интенсивности являются: разложение взрывчатого вещества с разрывом всех связей в молекуле и образованием простых веществ (фиг. 1, УЗ), отсутствие токсичных органических продуктов; значительно более высокая скорость процесса, что позволяет использовать его в промышленных условиях. При времени разложения 5-6 минут могут быть использованы проточные реакторы малого диаметра специальной конструкции, со встроенным излучателем, с интенсивностью ультразвуковых колебаний не менее 20 Вт/см2 для водных сред, обеспечивая, тем самым, оптимальное воздействие в режиме развитой кавитации с максимальным КПД электроакустического преобразования 82-85%.

Предложенный способ реализован при проведении лабораторных исследований в Бийском технологическом институте (филиале) АлтГТУ и готовится его промышленное внедрение на ФКП «Бийский олеумный завод».

Список литературы

1. Абдрахманова Ю.Ф. Токсикологические аспекты микробной конверсии 2,4,6-тринитротолуола / Ю.Ф. Абдрахманова, С.А. Зарипов, A.M. Зиганшин, Н.В. Тимофеев, Р.П. Наумова // Биология - наука XXI века. - РЖ Химия. - 2002. - №2. - С. 260.

2. Ли Ки Бум, Гу Ман Бук, Мун Сенг-Хеон. Генерирование in situ перекиси водорода и ее использование для ферментивоного разложения 2,4,6-тринитротолуола // Хим. Технол. и Биотехнол. - 2001. - №8. - Т. 76. - С. 811-819.

3. Китова A.E. Деградация 2,4-динитрофенола бактериями Rhodococcus erythro-polis / A.E. Китова, П.В. Ильясов // Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН.

4. Назаренко Е.С. Методы очистки сточных вод производства 2,4,6-тринитротолуола / Е.С. Назаренко, В.А. Ливке, Т.И. Рябуха // Хим. пром. - 1991. - №3. - С. 18-20.

5. Бубнов А.Г. Плазменно-каталитическая очистка сточных вод от высокотоксичных органических соединений / А.Г. Бубнов, В.И. Гриневич, Н.А. Кувыкин, О.Н. Маслова // ХВЭ. - 2004. - Т. 38, №1. - С. 44-49.

5. Епифанов В.Б. Химическое разложение нитроароматических взрывчатых материалов при вибрационных воздействиях / В.Б. Епифанова, Т.А. Чернова, М.Ф. Вологин, Г.Е. Кирьяков // Проблемы энергетических материалов. - 2005. - С. 134-135.

6. Брюс Неил С. Микробная деградация энергетических соединений // Химическая технология и биотехнология // ВИНИТИ N РЖ 99.99.05 - 04Р1.33.04Р1. - 1998. - Т. 71. - С. 362-364.

7. Сугак Н.Ю. Экспресс-методы химического разложения взрывчатых веществ в кислотных и щелочных средах // Современные проблемы технической химии: Матер. докл. Пленарное заседание. Секции 1-3 / Н.Ю. Сугак, А.С. Клинникова, О.А. Шилова. - Казань: Изд-во КГТУ, 2007. - С. 219-227.

8. Хмелев В. Н. Ультразвуковые многофункциональные и специализированные аппараты для интенсификации технологических процессов в промышленности / В. Н. Хмелев [и др.]. - Барнаул: АлтГТУ, 2007. - 416 с.

9. Крюгер Марио. Биологическое восстановление тринитротолуола как часть комбинированной биологически-химической процедуры минерализации / Крюгер Марио, Шумахер Мартино, Рис Хеик, Фелс Грегор // Биодеградация, 2004, №4. - Т. 15. - 241.- 248 с.

Похожие патенты RU2544678C2

название год авторы номер документа
СПОСОБ РАЗРУШЕНИЯ ЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ 1997
  • Эбил Элберт Е.
  • Моук Роберт В.
  • Гетмэн Джерри Д.
  • Хантер Вуд Е.
RU2195987C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДСОДЕРЖАЩЕГО ЖЕЛИРУЮЩЕГО КОНЦЕНТРАТА 1995
  • Утков Олег Петрович
RU2094002C1
СОВМЕЩЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ 4-АМИНО-2,6-ДИНИТРО- И 2,4,6-ТРИАМИНОТОЛУОЛОВ 2008
  • Михальченко Людмила Васильевна
  • Леонова Марина Юрьевна
  • Лейбзон Виталий Наумович
  • Гультяй Вадим Павлович
RU2368598C1
СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ХИТОЗАНА 2011
  • Манаенков Олег Викторович
  • Каменщиков Алексей Андреевич
  • Кислица Ольга Витальевна
  • Степаненко Юлия Викторовна
  • Сульман Михаил Геннадьевич
RU2445101C1
Способ очистки тротила-сырца 1970
  • Работинский Николай Ильич
  • Лысенко Николай Петрович
  • Дубов Геннадий Петрович
SU1841211A1
Способ и устройство получения порошка, пригодного для получения промышленных зарядов взрывчатых веществ из шашек бризантных взрывчатых веществ утилизированных боеприпасов 2022
  • Трефилов Юрий Петрович
RU2794645C1
ШТАММ ДРОЖЖЕЙ Yarrowia lipolytica ВКПМ Y-3492-ДЕСТРУКТОР ТРИНИТРОТОЛУОЛА 2010
  • Зиганшин Айрат Мансурович
  • Ильинская Ольга Николаевна
  • Наумова Римма Павловна
  • Наумов Анатолий Викторович
  • Хиляс Ирина Валерьевна
RU2467064C2
СПОСОБ СНИЖЕНИЯ ЭМИССИИ В ВОДНУЮ СРЕДУ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ИЗ ГАЛЬВАНИЧЕСКИХ ШЛАМОВ 2020
  • Сафаров Рудель Николаевич
  • Овсянников Анатолий Анатольевич
  • Харлямов Дамир Афгатович
  • Маврин Геннадий Витальевич
  • Фатихова Динара Робертовна
RU2742757C1
СПОСОБ ЭКСПРЕСС-ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2013
  • Дьяков Михаил Валерьевич
  • Юдин Николай Владимирович
  • Рудаков Геннадий Федорович
  • Веселова Екатерина Вячеславовна
  • Збарский Витольд Львович
RU2555758C2
(ЭТАН-1,2-ДИИЛБИС(ОКСИ))БИС(ЭТАН-2,1-ДИИЛ)БИС(ПИРЕН-1-КАРБОКСИЛАТ) - МОНОМОЛЕКУЛЯРНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2022
  • Ковалев Игорь Сергеевич
  • Садиева Лейла Керим Кызы
  • Тания Ольга Сергеевна
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
RU2812671C1

Иллюстрации к изобретению RU 2 544 678 C2

Реферат патента 2015 года СПОСОБ УНИЧТОЖЕНИЯ ТРИНИТРОТОЛУОЛА

Изобретение относится к области химической технологии энергонасыщенных материалов, а именно к способам утилизации образующихся отходов производства бракованного и просроченного продукта, и предназначено для лабораторных методов разложения тринитротолуола. Способ уничтожения тринитротолуола заключается в воздействии на тринитротолуол в водной среде щелочными химическими реагентами - водными растворами сульфита натрия и гидроокиси натрия с концентрацией 5-20%, при весовом соотношении тринитротолуол:химический реагент, равном 1:3-30, и одновременном воздействии ультразвуковыми колебаниями с частотой не ниже 20 кГц и интенсивностью не менее 2,5 Вт/см2, при этом при начальной температуре 40-50°C нагрев осуществляют за счет поглощения энергии ультразвуковых колебаний до температуры 80-85°C. Изобретение обеспечивает полное разложение взрывчатого вещества, отсутствие токсичных органических продуктов и высокую скорость процесса. 9 ил., 1 табл.

Формула изобретения RU 2 544 678 C2

Способ уничтожения тринитротолуола, заключающийся в воздействии на него в водной среде щелочными химическими реагентами - водными растворами сульфита натрия и гидроокиси натрия с концентрацией 5-20%, при весовом соотношении тринитротолуол:химический реагент=1:3-30, отличающийся тем, что одновременно осуществляют воздействие ультразвуковыми колебаниями с частотой не ниже 20 кГц и интенсивностью не менее 2,5 Вт/см2, при начальной температуре 40-50°C нагрев осуществляют за счет поглощения энергии УЗ-колебаний до температуры 80-85°C.

Документы, цитированные в отчете о поиске Патент 2015 года RU2544678C2

Способ очистки промышленных сточных вод от тринитротолуола 1971
  • Золотавин В.Л.
  • Спиридонов В.А.
  • Валеев Н.Х.
  • Санатина В.Н.
  • Калугина Н.Н.
  • Мигалатий Е.В.
SU432764A1
Способ биохимической очистки сточныхВОд OT НиТРОСОЕдиНЕНий 1979
  • Куликов Николай Иванович
  • Нездойминов Виктор Иванович
  • Чернышев Валентин Николаевич
  • Окрушко Василий Ефимович
  • Вертий Виктор Викторович
  • Бойко Анатолий Анатольевич
  • Пасанаев Альберт Константинович
SU833578A1
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ ВОДЫ ОТ ТРИНИТРОТОЛУОЛА 2010
  • Хиляс Ирина Валерьевна
  • Зиганшин Айрат Мансурович
RU2453508C2
WO 00/18693 A1, 06.04.2000

RU 2 544 678 C2

Авторы

Сугак Наталья Юрьевна

Хмелев Владимир Николаевич

Даты

2015-03-20Публикация

2013-05-07Подача