Изобретение относится к машиностроению, конкретнее к уплотняемым зазорам в энергетических турбинах и способам модификации стационарного кожуха таким образом, чтобы контролировать зазор между вращающимися и неподвижными компонентами турбин. В частности, изобретение относится к способу нанесения уплотнительного покрытия на элементы статора энергетических турбин, предназначенному контролировать зазор между вращающимися и неподвижными компонентами турбин.
Паровые турбины производств являются основными первичными двигателями мощных компрессорных и насосных агрегатов, надежности и эффективности работы которых уделяется особое внимание.
В настоящее время ведущие мировые производители паровых турбин наиболее активно ведут исследования в направлении конструктивных решений уплотнений паровых турбин.
Уплотнительные, или изнашиваемые покрытия применяются в газотурбинных двигателях в авиации, энергетике, газоперекачивающих агрегатах (ГПА) взамен вставок из уплотнительных материалов. Изнашиваемые покрытия снижают зазор между статором и ротором газогенератора (компрессор и турбина). Методом плазменного напыления уплотнительные покрытия делаются настолько податливыми, чтобы кромка лопатки или лабиринт легко врезались в их слой, однако достаточно прочными, чтобы выдерживать напор газового потока при повышенных температурах.
Применение уплотняющих (прирабатываемых) покрытий в горячей части турбины газотурбинного двигателя (ГТД) позволяет заметно повысить КПД и тепловую мощность двигателя за счет уплотнения зазоров по периферийным торцам лопаток и по гребешкам лабиринтных уплотнений между ступенями по всей окружности вращения, сводя к минимуму износ дорогостоящих вращающихся лопаток ротора турбины. Основными требованиями к уплотнительным покрытиям в ГТД являются достаточная прочность, податливость при врезании лопаток лабиринтными выступами, антифрикционность, теплозащитные свойства, эрозионная стойкость и низкое сопротивление "выветриванию" рабочей поверхности (со стороны газового потока).
Из уровня техники известен способ модификации элемента статора энергетической турбины, включающий нанесение на него покрытия (RU 2415199 С1, МПК С23С 14/38, опубликовано 27.03.2011).
Недостаток известного способа модификации элемента статора энергетической турбины заключается в том, что при нанесении покрытия не контролируется нагрев напыляемой поверхности, который приводит к снижению ресурса статора и наведению остаточных напряжений в уплотнительное покрытие, которые приводят к появлению трещин, сколов и отслоений уплотнительного покрытия как между слоями, так и от материала подложки.
Задачей, на решение которой направлено изобретение, является снижение температуры напыляемой поверхности во время напыления для сохранения работоспособности как материала статора, так и уплотнительного покрытия при высоких нагрузках, вызванных критическими режимами эксплуатации энергетических турбин.
Техническим результатом является снижение нагрева напыляемой поверхности в 3-4 раза, отсутствие трещин и расслоений в покрытии, увеличение прочностных свойств покрытия, увеличение коэффициента использования напыляемого порошка.
Технический результат достигается тем, что способ модификации элемента статора энергетической турбины включает нанесение на него покрытия плазменным напылением, под углом 55-70 градусов по отношению к поверхности напыления, причем скорость перемещения горелки относительно напыляемой поверхности элементов статора энергетических турбин во время напыления составляет 0,5-1,0 м/с, а площадь пятна напыления на поверхности элементов статора энергетических турбин составляет 1,7-5,0 см2.
Проведенные исследования показали, что при скорости напыления менее 0,5 м/с покрытие формируется с наведенными трещинами и расслоениями. При скорости напыления более 1,0 м/с снижается коэффициент использования порошка, т.е. на напыление той же толщины покрытия тратится в 1,5-2 раза больше порошка, что снижает экономическую привлекательность способа формирования уплотнительного покрытия.
Для получения толстого уплотнительного покрытия с минимальным перегревом напыляемой поверхности с минимальными временными паузами между нанесением каждого слоя покрытия необходимо контролировать площадь участка поверхности, подвергаемой напылению. При площади напыления менее 1,7 см2 покрытие формируется с наведенными трещинами. При площади напыления более 5,0 см покрытие формируется с расслоениями.
Пример 1. Порошок на основе оксида циркония с полиэстером был нанесен методом плазменного напыления. Угол нанесения керамического слоя составил 60 градусов. Скорость перемещения горелки относительно напыляемой поверхности статора во время напыления составила 0,75 м/с, которая была максимальна для применяемого вида манипулятора. Площадь пятна напыления на поверхности статора составила 3,4 см2.
Температура поверхности статора не поднималась выше 45 градусов, при этом покрытие сформировалось без трещин с итоговой толщиной - 4 мм.
Пример 2. Порошок на основе оксида циркония с полиэстером был нанесен методом плазменного напыления на ряд стальных образцов, при этом меняли режимы нанесения покрытия
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ УПЛОТНИТЕЛЬНОГО ПОКРЫТИЯ ДЛЯ МОДИФИКАЦИИ ЭЛЕМЕНТА СТАТОРА ТУРБИНЫ | 2013 |
|
RU2530974C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО УПРОЧНЯЮЩЕГО ПОКРЫТИЯ НА ДЕТАЛЯХ ЗАПОРНОЙ АРМАТУРЫ | 2013 |
|
RU2543117C2 |
СОСТАВ ПРИСАДОЧНОГО МАТЕРИАЛА | 2013 |
|
RU2530978C1 |
СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ | 2013 |
|
RU2545881C2 |
СПОСОБ ЗАЩИТЫ ЛОПАТОК ПАРОВЫХ ТУРБИН ОТ ПАРОКАПЕЛЬНОЙ ЭРОЗИИ | 2013 |
|
RU2545878C2 |
СПОСОБ РЕМОНТНОЙ НАПЛАВКИ ЛОПАТОК ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК | 2013 |
|
RU2545877C2 |
МНОГОСЛОЙНОЕ ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ | 2013 |
|
RU2532646C1 |
СПОСОБ НАПЫЛЕНИЯ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2003 |
|
RU2247792C2 |
СМЕСЬ ПОРОШКОВЫХ МАТЕРИАЛОВ ДЛЯ ГАЗОТЕРМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ | 2016 |
|
RU2680561C2 |
АМОРФНЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА | 2014 |
|
RU2631563C2 |
Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки относительно напыляемой поверхности элемента статора 0,5-1,0 м/с. Площадь пятна напыления на поверхности элемента статора составляет 1,7-5,0 см2. Техническим результатом является отсутствие трещин и расслоений в покрытии за счет снижения нагрева напыляемой поверхности в 3-4 раза, увеличение прочностных свойств покрытия, при этом увеличивается также коэффициент использования напыляемого порошка. 1 табл.
Способ получения покрытия на поверхности элемента статора энергетической турбины, включающий нанесение на его поверхность покрытия плазменным напылением, отличающийся тем, что на поверхность элемента статора наносят порошок под углом 55-70 градусов к поверхности напыления, при этом плазменную горелку перемещают относительно напыляемой поверхности элемента статора со скоростью 0,5-1,0 м/с, а напыление поверхности осуществляют участками с площадью напыления 1,7-5,0 см2.
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ | 2009 |
|
RU2415199C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ В ВАКУУМЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2265077C1 |
Огнетушитель | 1927 |
|
SU9539A1 |
US20100313875A1,16.12.2010 | |||
US20120160166A1,28.06.2012 |
Авторы
Даты
2015-04-10—Публикация
2013-05-16—Подача