СОСТАВ ПРИСАДОЧНОГО МАТЕРИАЛА Российский патент 2014 года по МПК B23K35/30 C22C38/00 

Описание патента на изобретение RU2530978C1

Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин, таких как лопатки, гребешки и др. из высоколегированных жаропрочных сталей и сплавов на железной, железо-никелевой основах.

Условия эксплуатации деталей энергетических установок таковы, что под действием возникающих многократных ударов капель конденсата, мельчайших частиц абразива, температуры, химических реагентов и др. факторов, происходит различный износ их рабочих поверхностей, сопровождаемый потерей исходного профиля, следствием чего является снижение эксплуатационных характеристик установки в целом.

Наиболее интенсивно проявление износа наблюдается на входных кромках, периферийных зонах, а также торцевых поверхностях лопаток, гребешках и др. При длительной работе энергетической установки, а особенно при работе на нестационарных режимах, интенсивность процесса износа может только усиливаться, при этом имеющиеся дефекты могут привести не только к локальному выкрашиванию металла, но обрыву части детали.

Для восстановления рабочего профиля при ремонте, а также увеличения срока эксплуатации деталей находят применение различные покрытия, состав которых обусловлен помимо условий эксплуатации, технологичностью материала деталей при изготовлении и ремонте.

Наибольшее распространение и изученность процесса получили технологии ремонта с использованием сварочных процессов (наплавки), важным фактором реализации которых является правильный выбор сварочных материалов с учетом их адаптации к основному материалу детали. Известно, что хромистые стали свариваются по таким технологическим вариантам:

- с применением сварочных (наплавочных) материалов такого же или сходного с основным металлом химического состава;

- с использованием присадочных материалов аустенитного или аустенитно-ферритного класса (сталей и сплавов). В первом случае формируется сварное соединение с высокой структурной однородностью и высокой хрупкостью (при отсутствии термической обработки) и высокой прочностью (при проведении термической обработки); во втором случае формируется соединение с различными структурными составляющими, которые не рекомендуется эксплуатировать при температурах выше 600°С.

Из уровня техники известен состав присадочного материала для ремонта деталей из жаропрочных сплавов (RU 2354523 С1, МПК В23Р 6/00, опубликовано 10.05.2009). Известный состав выбран в качестве ближайшего аналога.

Состав проволоки включает компоненты в следующем соотношении, мас.%: углерод 0,10-0,30; хром 15,0-20,0; вольфрам 1,4-2,0; молибден 14,0-20,0; никель 2,0-4,0; железо 2,0-4,0; марганец 0,5-1,0; титан 0,5-1,5; алюминий 0,5-1,5; по меньшей мере, один компонент из группы редкоземельных металлов 0,01-0,03; рений 0,01-0,05; кобальт - остальное до 100%.

Недостатками указанного аналога являются то что:

- за счет наличия в своем составе редкоземельных металлов его стоимость значительно повышается, что дополнительно способствует повышению затрат на проводимые ремонтно-восстановительные работы;

- применение указанного материала ограничено лишь для определенного класса материалов, при этом в случае сварки разнородных сталей и сплавов требуется проведение последующей термообработки для снятия внутренних напряжений и обеспечения более плавного перехода от одного материала к другому;

- введение молибдена и вольфрама в указанных пределах при температурах эксплуатации рабочей детали порядка 900°С и выше приводит к формированию сложнолегированных карбидов и фаз Лавеса, что обедняет твердый раствор по данным элементам и существенно снижает характеристики жаропрочности материала.

Задачей, на решение которой направлено изобретение, является восстановление и ремонт дорогостоящих деталей ротора путем нанесения покрытий из порошкового материала.

Желаемый технический результат заключается в снижении количества дефектов в наносимом покрытии и тем самым повышении эффективности ремонтных работ.

Желаемый технический результат достигается тем, что в состав присадочного материала для ремонта деталей из жаропрочных сталей и сплавов на железной и железо-никелевой основах, входят следующие компоненты: хром, кремний, углерод, молибден, вольфрам, ванадий, бор, никель, железо при их соотношении, масс.%: Cr - 8-15%; Si - 0,2-2,5%; С - 0,01-0,18%; Мо - 0,4-1,05%; W - 0,4-1,2%; V - 0,1-0,6%; В - 0,01-2,0%; Ni - 1-20%; Fe - остальное, при этом суммарное значение Мо и W не должно превышать 1,0%, а присадочный материал используют в виде порошка.

Состав присадочного порошкообразного материала подобран таким образом, чтобы обеспечить минимальное количество брака, в виде холодных и горячих трещин, при наплавке данного материала без последующей термообработки при сохранении устойчивости к внешним условиям воздействия среды. Это достигается за счет подбора соотношения таких легирующих элементов, как: углерод, молибден, вольфрам, хром, никель и др. Как известно, такие материалы как Ni, Mn, С, Cr, позволяют расширить диапазон начала и окончания мартенситного превращения, тем самым позволяя компенсировать усадочные процессы при наплавке на материалы с мартенситным характером упрочнения.

Модифицирование бором, кремнием в совокупности с углеродом, молибденом, вольфрамом, улучшает высокотемпературную структурную стабильность металла, способствует формированию мелкодисперсных карбидных и других упрочняющих фаз, термодинамически устойчивых в интервале температур 500-630°С.

При модифицировании кремнием и бором свыше 2,0-2,5% происходит образование сложных соединений за счет самофлюсования с формированием устойчивого при высоких температурах стекловидного слоя на поверхности. При этом происходит охрупчивание наплавленных слоев и риск образования поперечных трещин и пор, что снижает усталостные характеристики изделия.

Увеличение содержания углерода свыше приведенных значений приводит к выделению устойчивых карбидов по границам зерен с основными легирующими элементами Cr, Si, Mo, V, В и тем самым снижает коррозионную стойкость и пластические свойства из-за обеднения твердого раствора. Также известно, что увеличение содержания углерода приводит к снижению температуры плавления и уменьшению критической скорости охлаждения стали, что обуславливает увеличение глубины зоны лазерного воздействия и может привести к таким дефектам, как растрескивание.

Суммарное значение Мо и W характеризует «молибденовый эквивалент», определяемый соотношением (Mo+0,5W) не должен превышать 1,0%. В случае его превышения происходит разупрочнение твердого раствора вследствие зарождения, роста и коагуляции в приграничных областях сложнолегированных карбидов и фаз Лавеса, обогащенных атомами молибдена и вольфрама, в результате чего происходит диффузионное обеднение твердого раствора по этим элементами с существенным снижением характеристик жаропрочности материала.

При этом в качестве рекомендуемого способа нанесения данного состава предлагается лазерное излучение, что связано с условием минимального термического воздействия на материал основы, а также незначительной зоной перемешивания с основой детали.

В качестве примера реализации ремонтной технологии можно привести процесс восстановления рабочей лопатки паровой турбины из стали с мартенситным характером упрочнения, типа 13Х11Н2В2МФ-Ш. При этом предварительная механическая обработка восстанавливаемой поверхности проводилась с применением ручного шлифовального инструмента типа пневматической бормашины. Затем проводилась многослойная наплавка разработанным составом на подготовленной поверхности, при этом режим термического воздействия подобран так, чтобы снизить величину зоны перемешивания материала основы с покрытием и тем самым уйти от последующей термообработки детали. При этом проведение процесса восстановления с составом аналогичным разработанному, но имеющему Ni порядка 30% при режимах наплавки с мощностью более 1500 Вт приводило к образованию поперечных трещин в наплавленном слое, тогда как разработанный состав в диапазоне мощностей 500-3500 Вт обеспечивал стабильное отсутствие дефектов в виде растрескивания.

Похожие патенты RU2530978C1

название год авторы номер документа
АМОРФНЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА 2014
  • Балдаев Лев Христофорович
  • Доброхотов Николай Александрович
  • Дубов Игорь Руфимович
  • Коржнев Владимир Ильич
  • Лобанов Олег Алексеевич
  • Мухаметова Светлана Салаватовна
  • Новинкин Юрий Алексеевич
  • Силимякин Николай Васильевич
RU2631563C2
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ 2007
  • Поклад Валерий Александрович
  • Крюков Михаил Александрович
  • Борисов Михаил Тимофеевич
  • Козлов Сергей Николаевич
RU2346797C1
СПОСОБ РЕМОНТНОЙ НАПЛАВКИ ЛОПАТОК ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2013
  • Балдаев Лев Христофорович
  • Доброхотов Николай Алексеевич
  • Дубов Игорь Руфимович
  • Ишмухаметов Динар Зуфарович
  • Коржнев Владимир Ильич
  • Лобанов Олег Алексеевич
  • Мухаметова Светлана Салаватовна
  • Силимянкин Николай Васильевич
RU2545877C2
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2011
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
RU2447184C1
ЖАРОСТОЙКИЙ ЖЕЛЕЗО-ХРОМ-АЛЮМИНИЕВЫЙ СПЛАВ С НИЗКОЙ СКОРОСТЬЮ ИСПАРЕНИЯ ХРОМА И ПОВЫШЕННОЙ ЖАРОПРОЧНОСТЬЮ 2012
  • Хаттендорф, Хайке
  • Кун, Бернд
  • Экардт, Томас
  • Бек, Тильманн
  • Квадаккерс, Виллем, Ю.
  • Тайзен, Вернер
  • Набиран, Нилофар
RU2567144C2
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2014
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Федосеева Александра Эдуардовна
  • Мишнев Роман Владимирович
RU2585591C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Ригина Людмила Георгиевна
  • Козлов Павел Александрович
  • Дуб Владимир Алексеевич
RU2458179C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2014
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Федорова Ирина Федоровна
RU2558738C1
МАТЕРИАЛЫ ДЛЯ ЭЛЕКТРОДУГОВОЙ НАПЛАВКИ ФЕРРОМАГНИТНОЙ ШИХТОЙ ПОВЕРХНОСТИ РОЛИКОВ СИСТЕМЫ ВТОРИЧНОГО ОХЛАЖДЕНИЯ УСТАНОВКИ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ 2015
  • Цирков Павел Александрович
  • Цирков Александр Алексеевич
  • Циркова Ольга Васильевна
  • Глазунов Сергей Николаевич
  • Глазунова Елена Юрьевна
  • Вялков Вадим Геннадьевич
  • Бокова Виктория Вадимовна
RU2613801C2
ПРИСАДОЧНЫЙ МАТЕРИАЛ НА ОСНОВЕ НИКЕЛЯ 2008
  • Лукин Владимир Иванович
  • Старова Лидия Леонидовна
  • Ковальчук Вера Георгиевна
  • Голев Евгений Викторович
  • Латышев Владимир Борисович
RU2373038C1

Реферат патента 2014 года СОСТАВ ПРИСАДОЧНОГО МАТЕРИАЛА

Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин. Состав присадочного материала в виде порошка для восстановления жаропрочных сталей характеризуется тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si - 0,2-2,5, С - 0,01-0,18, Мо - 0,4-1,05, W - 0,4-1,2, V - 0,1-0,6, В - 0,01-2,0, Ni - 1-20, Fe - остальное, при этом суммарное значение Мо и W не превышает 1,0 мас.%. Снижается количество дефектов в наносимом покрытии и повышается эффективность ремонтных работ. 1 пр.

Формула изобретения RU 2 530 978 C1

Состав присадочного материала в виде порошка для восстановления жаропрочных сталей, характеризующийся тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si - 0,2-2,5, С - 0,01-0,18, Мо - 0,4-1,05, W - 0,4-1,2, V - 0,1-0,6, В - 0,01-2,0, Ni - 1-20, Fe - остальное, при этом суммарное значение Мо и W не превышает 1,0 мас.%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530978C1

ТВЕРДЫЙ ПРИПОЙ 2007
  • Шёдин Пер
RU2469829C2
УСТРОЙСТВО ПОВЫШЕНИЯ КАЧЕСТВА КОНТРОЛЯ ПОДВИЖНОГО СОСТАВА 2007
  • Лукьянов Анатолий Валерианович
  • Пашков Николай Николаевич
  • Комков Андрей Зинурович
  • Солдатенков Евгений Геннадьевич
  • Перелыгин Владимир Николаевич
RU2373093C2
ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА 2001
  • Гутковский Л.Б.
  • Каморин О.А.
  • Кулбасов А.С.
  • Логинов В.Н.
RU2183688C1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ И ОТБРАКОВКИ ШАРИКОПОДШИПНИКОВ 1993
  • Долгих С.И.
RU2050533C1

RU 2 530 978 C1

Авторы

Балдаев Лев Христофорович

Доброхотов Николай Алексеевич

Дубов Игорь Руфимович

Ишмухаметов Динар Зуфарович

Коржнев Владимир Ильич

Лобанов Олег Алексеевич

Мухаметова Светлана Салаватовна

Силимянкин Николай Васильевич

Даты

2014-10-20Публикация

2013-05-16Подача