СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ) Российский патент 2015 года по МПК G21G1/10 

Описание патента на изобретение RU2548168C2

Изобретение касается способа и устройства для получения 99mTc. 99mTc применяется, в частности, в медицинской графической диагностике, например в SPECT (Single Photon Emission Computerized Tomography - ОФЭКТ - однофотонная эмиссионная компьютерная томография).

Стандартный генератор 99mTc представляет собой прибор для экстрагирования метастабильного изотопа 99mTc из источника, который содержит распадающийся 99Mo.

99Mo, в свою очередь, чаще всего получается методом, в котором в качестве мишени применяется высокообогащенный уран 235U. При облучении мишени нейтронами в качестве продукта расщепления образуется 99Mo. В соответствии с международным соглашением, однако, в будущем станет все труднее эксплуатировать реакторы с высокообогащенным ураном, что может привести к снижению поставок радионуклидов для графической диагностики ОФЭКТ.

Поэтому задачей изобретения является создать способ и устройство для альтернативного получения 99mTc.

Задача изобретения решается с помощью признаков независимых пунктов формулы изобретения. Предпочтительные усовершенствования изобретения содержатся в признаках зависимых пунктов формулы изобретения.

Предлагаемый изобретением способ получения 99mTc включает следующие стадии:

- приготовление раствора, содержащего 100Mo-молибдат-ионы;

- создание протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc;

- облучение раствора протонным лучом и индуцирование ядерной реакции 100Mo(p,2n)99mTc;

- применение метода экстрагирования для экстрагирования 99mTc из раствора.

То есть 99mTc получается непосредственно с помощью ядерной реакции, которая осуществляется при взаимодействии протонного луча с атомами молибдена, по уравнению 100Mo(p,2n)99mTc. Энергия протонного луча составляет больше 20 Мэв и поэтому находится в диапазоне, в котором лежит эффективное сечение для указанной ядерной реакции. При этом атомы 99mTc могут получаться в количестве, достаточном для получения 99mTc. Благодаря тому, что атомы молибдена находятся в растворе в виде молибдат-ионов, образовавшийся 99mTc может затем просто экстрагироваться из раствора с помощью метода экстрагирования. Экстрагированный 99mTc может затем применяться в разных целях, в частности для получения радионуклида для графической диагностики ОФЭКТ.

Протонный луч ускоряется до энергии, равной по меньшей мере 20 Мэв. Предпочтительно луч частиц ускоряется до энергии, равной от 20 Мэв до 25 Мэв. Путем ограничения максимальной энергии до максимум 35 Мэв, в частности до 30 Мэв и в частности не более чем до 25 Мэв, предотвращается обусловленное слишком высокой энергией луча частиц возбуждение ядерных реакций, которые приводят к нежелательным продуктам реакции, например к другим изотопам Tc, чем 99mTc, которые затем снова требуют дополнительной стадии, с помощью которой эти нежелательные продукты реакции снова удаляются. Камера, в которой находится раствор, содержащий молибдат-ионы, может быть устроена или, соответственно, размеры ее могут быть выбраны таким образом, чтобы выходящий луч частиц обладал энергией, равной по меньшей мере 10 Мэв. Таким образом энергетический диапазон протонного луча может оставаться в области, в которой возникающие ядерные реакции остаются под контролем и в которой нежелательные продукты реакции образуются только в приемлемом количестве.

Ускорение протонов до указанной энергии требует обычно только одного единственного блока ускорителя среднего размера, который также может применяться и инсталлироваться локально. Возможно получение 99mTc описанным способом локально вблизи или, соответственно, в окрестностях желаемого места применения, например в окрестностях больницы. В противоположность традиционным, нелокальным методам производства, которые связаны с применением больших установок, таких как ядерные реакторы, и сопутствующей им проблемой распределения, локальное производство решает многие проблемы. Отделения радиационной медицины могут планировать свои рабочие процессы независимо друг от друга и обходятся без затратной логистики и инфраструктуры.

В одном из вариантов осуществления процесс экстрагирования может представлять собой процесс экстрагирования жидкостью из жидкости, в частности, с применением метилэтилкетона.

Этот процесс экстрагирования предлагается, потому что 99mTc находится в растворе. 99mTc растворяется в метилэтилкетоне, при этом молибдат-ионы продолжают оставаться в водном растворе. Таким образом 99mTc может быть отделен от 100Mo. Насыщенный 99mTc метилэтилкетон может, например, сушиться, так что затем 99mTc может, например, использоваться для изготовления радиоактивного лекарства.

В одном из вариантов осуществления остаточные после экстрагирования 99mTc растворенные 100Mo-молибдат-ионы снова подаются в раствор, подлежащий облучению, например, в замкнутом циркуляционном контуре. Так обеспечивается особенно эффективное применение исходного материала, а именно 100Mo-молибдат-ионов.

В одном из вариантов осуществления раствор, содержащий 100Mo-молибдат-ионы, представляет собой раствор 100Mo-молибдат-соли, при этом в растворе при облучении протонным лучом у катионов 100Mo-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт, в частности катионный конечный продукт, которого не было в первоначально подлежащем облучению растворе, представляющий собой ион, который является неустойчивым и/или потенциально вредным для человеческого тела. Термин «катионный конечный продукт» не обязательно означает, что конечный продукт должен быть катионом, это означает только, что этот конечный продукт происходит из катионов соли.

В этом случае остаточные, растворенные 100Mo-молибдат-ионы после экстрагирования 99mTc снова добавляются в подлежащий облучению раствор, при этом по меньшей мере один катионный конечный продукт перед добавлением удаляется, в частности, с применением ионообменника.

Этот вариант осуществления может обладать тем преимуществом, что раствор, снова добавляемый в подлежащий облучению раствор, не содержит компонентов, которые при повторном облучении протонным лучом приводили бы к другим продуктам облучения, которые отличаются от катионных конечных продуктов. Тогда, например, можно избежать того, чтобы в раствор подавались катионные конечные продукты, которые при облучении приводили бы к другим, новым ядерным реакциям. Благодаря этому можно достичь предотвращения неконтролируемых или необозримых ядерных реакций, несмотря на циркуляцию молибдат-ионов.

В одном из вариантов осуществления экстрагированный 99mTc может очищаться от загрязнений, в частности, с применением ионообменника.

Таким образом могут, например, удаляться потенциально нежелательные компоненты экстрагированного раствора 99mTc перед дальнейшей переработкой. Так могут, например, удаляться потенциальные, токсичные для человеческого тела вещества перед образованием радионуклида или другие радионуклиды с другим периодом полураспада.

В одном из вариантов осуществления 100Mo-молибдат-соль включает 6Li2100MoO4. 6Li распадается при ядерной реакции 6Li(p,3He)4H с получением 4H, который, в свою очередь, распадается с получением трития.

При применении 7Li обстрел протонным лучом приводил бы к возбуждению реакции 7Li(p,n)7Be, при этом 7Be снова должен был бы удаляться. Применение 6Li предотвращает это.

Таким образом не происходит образование катионного продукта, который при повторном облучении протонным лучом приводил бы к неконтролируемой цепи ядерных реакций. При известных условиях обходятся без ступени очистки, с помощью которой удаляется образующийся катионный конечный продукт.

В другом варианте осуществления 100Mo-молибдат-соль включает Na2100MoO4. По меньшей мере один катионный конечный продукт включает при этом 18F. Конечно имеющийся 23Na при обстреле протонным лучом в реакции 23Na(p,n)23Mg превращается в 23Mg, который, в свою очередь, быстро распадается с получением 23Na. Следующей ядерной реакцией является 23Na(p,x)18F. В целом после облучения в качестве катионного конечного продукта теперь имеется также 18F, которого не было в первоначальном растворе. 18F может удаляться с помощью ионообменника, например, из раствора, который после экстрагирования 99mTc содержит остаточный молибдат и который снова добавляется в первоначальный раствор. Тем самым предотвращается возбуждение цепи лишь с трудом контролируемых ядерных реакций, обусловленных облучением 18F и контуром рециркуляции.

В другом варианте осуществления 100Mo-молибдат-соль включает K2100MoO4, при этом катионный конечный продукт включает 41Ca. Конечно имеющийся 41K посредством протонного луча преобразуется в следующих ядерных реакциях: 41K(p,n)41Ca, 41K(p,γ)42Ca, 41K(p,αγ)38Ar. Также, конечно, имеющийся 39K посредством протонного луча преобразуется в следующих ядерных реакциях: 39K(p,d)38K, 39K(p,γ)40Ca. 38K распадается с получением 38Ar. Из образовавшихся ионов Ca только 41Ca неустойчив. С помощью ионообменника могут удаляться все ионы. Рециркуляция 38Ar является некритичной, так как поперечное сечение взаимодействия для взаимодействия с протонным лучом лежит в другом диапазоне, чем поперечное сечение взаимодействия для ядерной реакции 100Mo(p,2n)99mTc. Поэтому рециркуляция и облучение 38Ar не создает цепи ядерных реакций с неконтролируемыми конечными продуктами.

Устройство для получения 99mTc, включающее

- раствор, содержащий 100Mo-молибдат-ионы;

- ускоритель для создания протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc, для облучения раствора и для индуцирования ядерной реакции 100Mo(p,2n)99mTc;

- секцию экстрагирования для экстрагирования 99mTc из раствора.

В одном из вариантов осуществления раствор, содержащий 100Mo-молибдат-ионы, представляет собой раствор 100Mo-молибдат-соли, при этом в растворе при облучении протонным лучом у катионов 100Mo-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт, и при этом устройство дополнительно включает следующую за секцией экстрагирования секцию очистки, в которой экстрагированный 99mTc может очищаться от загрязнений катионным конечным продуктом.

В одном из вариантов осуществления предусмотрен циркуляционный контур, с помощью которого остаточные после экстрагирования 99mTc растворенные 100Mo-молибдат-ионы могут снова добавляться в подлежащий облучению раствор посредством, например, замкнутого циркуляционного контура. В частности, если раствор 100Mo-молибдат-ионов представляет собой раствор 100Mo-молибдат-соли, устройство дополнительно может включать включенную в циркуляционный контур промежуточную секцию очистки, в которой указанный по меньшей мере один катионный конечный продукт удаляется перед добавлением остаточных растворенных 100Mo-молибдат-ионов, в частности, с применением ионообменника.

Предыдущее и последующее описание отдельных признаков, преимущества которых и действия которых касается как категории устройства, так и категории способа, без явного упоминания об этом в каждом случае; описанные при этом отдельные признаки могут быть также существенными для изобретения в других комбинациях, чем показанные.

Варианты осуществления изобретения с предпочтительными усовершенствованиями в соответствии с признаками зависимых пунктов поясняются подробнее с помощью следующего чертежа, не будучи им ограничены. Показано:

фиг.1 - конструкция устройства для получения 99mTc из молибдат-соли лития;

фиг.2 - конструкция устройства для получения 99mTc из молибдат-соли натрия;

фиг.3 - конструкция устройства для получения 99mTc из молибдат-соли калия.

По варианту осуществления, показанному на фиг.1, сначала приготавливается водный раствор 11, в котором растворен 6Li2100MoO4.

Раствор 11 затем подается в облучательную камеру 13, которая облучается протонным лучом 15, создаваемым блоком 17 ускорителя, таким как, например, циклотрон. Протонный луч 15 при этом при входе в облучательную камеру 13 обладает энергией, составляющей от 20 до 25 Мэв, а при выходе энергией, равной примерно 10 Мэв. В этом энергетическом диапазоне протонный луч 15 взаимодействует с 100Mo и превращает его в ядерной реакции частично непосредственно в 99mTc, посредством ядерной реакции 100Mo(p,2n)99mTc.

При облучении ионов 6Li возникают также следующие ядерные реакции: 6Li(p,3He)4H, причем 4H сразу же распадается с получением трития.

Облученный раствор подается в секцию 19 для экстрагирования растворителями, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора. Растворенный в МЭК 99mTc может затем подвергаться дальнейшей переработке, например, в последующем фармацевтическом модуле (не показан).

Остаточный раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 11.

Вариант осуществления, показанный на фиг.2, отличается от фиг.1 тем, что сначала приготавливается водный раствор 21, в котором растворен Na2100MoO4.

При облучении ионов Na возникают следующие ядерные реакции: 23Na(p,n)23Mg и 23Na(p,x)18F. 23Mg распадается, в свою очередь, на устойчивый 23Na. 18F, напротив, является радиоактивным.

Облученный раствор подается для экстрагирования растворителями в секцию 19, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора. Перед дальнейшей переработкой загрязнения 18F могут удаляться с помощью первого ионообменика 23.

Также 18F может удаляться с помощью другого ионообменика 25, прежде чем остаточный после экстрагирования 99mTc раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 21.

Экстрагированный и очищенный от 18F раствор 27 99mTc может затем, например, передаваться в последующий фармацевтический модуль.

Вариант осуществления, показанный на фиг.3, отличается от фиг.1 тем, что сначала приготавливается водный раствор, в котором растворен K2100MoO4.

При облучении ионов Na возникают следующие ядерные реакции: 41K(p,n)41Ca, 41K(p,γ)42Ca, 41K(p,αγ)38Ar, 39K(p,d)38K, 39K(p,γ)40Ca. Из образующихся катионных продуктов только 41Ca является неустойчивым.

Облученный раствор подается для экстрагирования растворителями в секцию 19, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора.

Перед дальнейшей переработкой загрязнения 41Ca могут удаляться с помощью первого ионообменика 33.

Также 41Ca может удаляться с помощью другого ионообменика 35, прежде чем остаточный после экстрагирования 99mTc раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 31.

Экстрагированный и очищенный от 41Ca раствор 99mTc может затем, например, сушиться в сушильном блоке 37 и передаваться в последующий фармацевтический модуль (не показан).

Спецификация позиций

11, 21, 31 Водный раствор

13 Облучательная камера

15 Протонный луч

17 Ускорительный блок

19 Секция для экстрагирования растворителями

23, 33 Первый ионообменник

25, 35 Другой ионообменник

27 Очищенный раствор 27 99mTc

29 Сушильное устройство

Похожие патенты RU2548168C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТА РЕАКЦИИ Tc 2011
  • Хьюз Тимоти
  • Баурихтер Арнд
  • Хайд Оливер
RU2567862C2
Способ получения технеция-99m 2019
  • Мокров Юрий Геннадьевич
RU2701552C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА ДВУХ РАЗЛИЧНЫХ РАДИОАКТИВНЫХ ИЗОТОПОВ 2011
  • Баурихтер Арнд
  • Хайд Оливер
  • Хьюз Тимоти
RU2549881C2
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОЙ МИШЕНИ ДЛЯ ПРОИЗВОДСТВА МОЛИБДЕН-99 2017
  • Артюхов Алексей Александрович
  • Артюхов Александр Алексеевич
  • Кузнецова Татьяна Михайловна
  • Загрядский Владимир Анатольевич
  • Кравец Яков Максимович
  • Меньшиков Леонид Иеоронимович
  • Рыжков Александр Васильевич
  • Удалова Татьяна Андреевна
  • Чувилин Дмитрий Юрьевич
RU2666552C1
ПРОИЗВОДСТВО МОЛИБДЕНА-99 С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОННЫХ ПУЧКОВ 2014
  • Дайамонд Уильям
  • Нагаркал Вайней
  • Де Жон Марк
  • Режье Кристофер
  • Лин Линда
  • Улрих Дуглас
RU2667072C2
Электролитический способ изготовления молибденовых мишеней для получения изотопов технеция 2022
  • Шмыгалев Александр Сергеевич
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Чернышев Александр Александрович
  • Архипов Степан Павлович
  • Зайков Юрий Павлович
  • Скориков Алексей Александрович
RU2811032C1
Электролитический способ изготовления молибденовых мишеней для получения изотопов технеция 2022
  • Шмыгалев Александр Сергеевич
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Чернышев Александр Александрович
  • Архипов Степан Павлович
  • Зайков Юрий Павлович
  • Скориков Алексей Александрович
RU2811084C1
Способ получения 5-(2-[F]фторэтокси)-L-триптофана 2023
  • Марфичев Алексей Юрьевич
  • Сипкина Надежда Юрьевна
  • Наан Мария Михайловна
  • Рыжкова Дарья Викторовна
RU2824037C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА МОЛИБДЕН-99 2012
  • Чувилин Дмитрий Юрьевич
  • Загрядский Владимир Анатольевич
  • Меньшиков Леонид Иеронимович
  • Кравец Яков Максимович
  • Артюхов Александр Алексеевич
  • Рыжков Александр Васильевич
RU2490737C1
СПОСОБ ГЕНЕРАЦИИ МЕДИЦИНСКИХ РАДИОИЗОТОПОВ 2012
  • Джилавян Леонид Завенович
  • Карев Александр Иванович
  • Раевский Валерий Георгиевич
RU2500429C2

Иллюстрации к изобретению RU 2 548 168 C2

Реферат патента 2015 года СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ)

Изобретение относится к способу получения 99mTc. Заявленный способ включает следующие стадии: получение раствора, содержащего 100Mo-молибдат-ионы; создание протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc; облучение раствора протонным лучом и индуцирование ядерной реакции 100Mo(p,2n)99mTc; применение метода экстрагирования для экстрагирования 99mTc из раствора. Кроме того, изобретение касается устройства для получения 99mTc, включающего раствор, содержащий 100Mo-молибдат-ионы; ускоритель для создания протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc, для облучения раствора и для индуцирования ядерной реакции 100Mo(p,2n)99mTc; секции экстрагирования для экстрагирования 99mTc из раствора. Техническим результатом является отсутствие необходимости в эксплуатации реакторов с высокообогащенным ураном для получения изотопов, в частности, для медицинской диагностики. 2 н. и 12 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 548 168 C2

1. Способ получения 99mTc, включающий следующие стадии:
- получение раствора (11, 21, 31), содержащего 100Мо-молибдат-ионы;
- создание протонного луча (15) с энергией, достаточной для того, чтобы при облучении 100Мо-молибдат-ионов индуцировать ядерную реакцию 100Мо(р,2n)99mTc;
- облучение раствора протонным лучом (15) и индуцирование ядерной реакции 100Мо(р,2n)99mTc;
- применение метода экстрагирования для экстрагирования 99mTc из раствора.

2. Способ по п.1, по которому процесс экстрагирования представляет собой процесс экстрагирования растворителями, в частности, с применением метилэтилкетона.

3. Способ по п.1 или 2, по которому остаточные после экстрагирования 99mTc растворенные 100Мо-молибдат-ионы снова подаются в раствор, подлежащий облучению.

4. Способ по п.1, по которому раствор, содержащий 100Мо-молибдат-ионы, представляет собой раствор 100Мо-молибдат-соли (11, 21, 31), при этом в растворе (11, 21, 31) при облучении протонным лучом у катионов 100Мо-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт.

5. Способ по п.4, по которому после экстрагирования 99mTc остаточные, растворенные 100Мо-молибдат-ионы снова добавляют в подлежащий облучению раствор, и при этом указанный по меньшей мере один катионный конечный продукт перед добавлением удаляют, в частности, с применением ионообменника (25, 35).

6. Способ по п.4 или 5, по которому после экстрагирования 99mTc из раствора экстрагированный 99mTc очищают от загрязнений, в частности, с применением ионообменника (23, 33).

7. Способ по п.4 или 5, по которому 100Мо-молибдат-соль включает 6Li2100MoO4 и по которому катионный конечный продукт включает 3H.

8. Способ по п.4 или.5, по которому 100Мо-молибдат-соль включает Na2100MoO4 и по которому катионный конечный продукт включает 18F.

9. Способ по п.4 или 5, по которому 100Мо-молибдат-соль включает K2100MoO4 и по которому катионный конечный продукт включает ионы Са.

10. Устройство для получения 99mTc, включающее
- раствор (11, 21, 31), содержащий 100Мо-молибдат-ионы;
- ускоритель для создания протонного луча с энергией, достаточной для того, чтобы при облучении 100Мо-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc, для облучения раствора и для индуцирования ядерной реакции 100Мо(р,2n)99mTc;
- секцию (19) экстрагирования для экстрагирования 99mTc из раствора.

11. Устройство по п.10, у которого остаточные после экстрагирования 99mTc растворенные 100Мо-молибдат-ионы могут снова добавляться в подлежащий облучению раствор (11, 21, 31) посредством замкнутого циркуляционного контура.

12. Устройство по одному из предыдущих пп.10 или 11, у которого раствор, содержащий 100Мо-молибдат-ионы, представляет собой раствор 100Мо-молибдат-соли, при этом в растворе (11, 21, 31) при облучении протонным лучом (15) у катионов 100Мо-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт.

13. Устройство по п.12, где оно дополнительно включает включенную после секции (19) экстрагирования первую секцию (23, 33) очистки, в которой экстрагированный 99mTc может очищаться от загрязнений катионным конечным продуктом.

14. Устройство по п.12, дополнительно включающее вторую секцию (25, 35) очистки, в которой по меньшей мере один катионный конечный продукт удаляется перед добавлением остаточных растворенных 100Мо-молибдат-ионов, в облученный раствор (11, 21, 31), в частности, с применением ионообменника.

Документы, цитированные в отчете о поиске Патент 2015 года RU2548168C2

US2007160176 A1, 12.07.2007
WO 2009142669 A2, 26.11.2009
US 0006011825 A1, 04.01.2000
СПОСОБ ЭКСТРАКЦИОННОГО ПОЛУЧЕНИЯ ТЕХНЕЦИЯ-99М И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Скуридин В.С.
RU2118858C1

RU 2 548 168 C2

Авторы

Баурихтер Арнд

Хайд Оливер

Хьюз Тимоти

Даты

2015-04-20Публикация

2011-01-20Подача