Изобретение относится к области медицинской техники, а именно к имплантационным металлическим изделиям, и может использоваться при изготовлении спицевых, а также стержневых чрескостных имплантатов с оксидным биосовместимым покрытием.
Для повышения эффективности функционирования чрескостных металлических имплантатов в костной ткани на их поверхности создают пористые оксидные покрытия с качествами биосовместимости. Однако в процессе установки имплантатов и их последующего приживления в организме часто возникает опасность инфицирования имплантационной зоны, где происходит развитие микроорганизмов с высоким патогенным потенциалом. В результате возникает опасность отторжения имплантатов из-за протекания гнойно-воспалительных явлений. При этом известные способы формирования газотермических оксидных покрытий на металлических имплантатах не позволяют с помощью технологически простых условий получать оксидные покрытия с бактерицидными свойствами, существенно повышающими эффективность приживления имплантируемых металлоконструкций.
Известен способ получения биосовместимого покрытия на имплантатах из титана и его сплавов, заключающийся в газотермическом оксидировании в смеси, состоящей из инертного (Ar, Ne, Не) и окисляющего (O2, CO2) газов, с последующим охлаждением оксидированных имплантатов в инертном газе [патент РФ №2322267, МПК: A61L 31/08, A61L 27/06, опубл. 20.04.2008 г.]. Процесс оксидирования имплантатов ведут при температуре 600-1000°C в течение 1,5-2,0 ч.
Недостатком данного способа является технологическая сложность процесса оксидирования имплантатов и отсутствие технической возможности получения оксидного биосовместимого покрытия с бактерицидными свойствами.
Известен способ получения оксидного биосовместимого покрытия на чрескостных имплантатах из нержавеющей стали, заключающийся в том, что осуществляют оксидирование имплантатов на воздухе при температуре 300-600°C, продолжительности 0,3-1,0 ч и атмосферном давлении среды с последующим постепенным охлаждением обработанных изделий в печи до температуры окружающей среды (20-30°C) [патент РФ №2412723, МПК: A61L 27/04, опубл. 27.02.2011 г.].
Недостатком данного способа является отсутствие технической возможности получения оксидного биосовместимого покрытия с бактерицидными свойствами.
Известно оксидное покрытие на чрескостные ортопедические имплантаты из нержавеющей стали, состоящее из смеси оксидов металлов (Cr, Ni, Fe, Ti), входящих в состав сплава, причем выполнено с содержанием меди при следующем соотношении компонентов: смесь оксидов металлов (Cr, Ni, Fc, Ti), входящих в состав сплава: от 95 до 98%, медь: от 2 до 5% [патент РФ №2465015, МПК: A61L 27/04, A61K 6/04, опубл. 27.10.2012 г.].
Однако существенным недостатком данного изобретения является высокая трудоемкость и технологическая сложность получения покрытия.
Ближайшим прототипом, по мнению авторов, является способ получения биосовместимого покрытия на остеофиксаторах из титана путем воздействия на них перегретого водяного пара при температуре 500-550°C в течение 1,5-2,0 ч [патент РФ №2332239, МПК: A61L 27/10, A61L 27/06, опубл. 27.08.2008 г.]. При этом сначала из печи удаляют воздух подачей в рабочий объем перегретого пара под давлением 3-4 атм, потом проводят оксидирование в среде чистого пара, подаваемого под давлением 1,2-1,3 атм. После термообработки оксидированные остеофиксаторы сначала охлаждают в печи в среде пара до температуры 250-300°C, а затем на воздухе до температуры 20-30°C.
Однако существенным недостатком данного способа является отсутствие технической возможности получения оксидного биосовместимого покрытия с бактерицидными свойствами на металлических имплантатах для наружного чрескостного остеосинтеза.
Задачей изобретения является создание технологически простого способа получения оксидного биосовместимого покрытия с бактерицидными свойствами на металлических имплантатах для наружного чрескостного остеосинтеза.
Технический результат изобретения заключается в повышении эффективности приживления имплантатов с оксидным биосовместимым покрытием и минимизации опасности возникновения воспалительных явлений в тканях.
Поставленная задача достигается за счет того, что в предлагаемом способе получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза, включающем оксидирование имплантатов в атмосфере перегретого водяного пара при температуре 500-550°C, давлении подачи пара 1,2-1,3 атм в течение 1,5-2,0 ч при предварительном удалении воздуха из рабочего объема печи путем подачи в него под давлением 3-4 атм перегретого пара, охлаждение оксидированных имплантатов сначала в печи в среде пара до температуры 250-300°C, а затем на воздухе до температуры 20-30°C, согласно новому техническому решению, оксидирование имплантатов проводят в смеси перегретого водяного пара и наночастиц серебра при соотношении компонентов: перегретый водяной пар - 95-98%, наночастицы серебра - 2-5%. При этом происходит образование композиционного биосовместимого покрытия, состоящего из металлооксидной матрицы, в объеме которой распределены наночастицы серебра, придающие покрытию бактерицидные свойства.
Способ осуществляют следующим образом. Для получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза проводят их термическое оксидирование в смеси перегретого водяного пара и наночастиц серебра при следующем соотношении компонентов в смеси: перегретый водяной пар - 95-98%, наночастицы серебра - 2-5%. Оксидирование осуществляют при температуре 500-550°C, давлении подачи смеси водяного пара и наночастиц серебра 1,2-1,3 атм в течение 1,5-2,0 ч. При этом предварительно из рабочего объема печи удаляют воздух путем подачи в него перегретого чистого пара под давлением 3-4 атм. После термообработки проводят охлаждение оксидированных имплантатов сначала в печи в среде чистого пара до температуры 250-300°C, а затем на воздухе до температуры 20-30°C. В данных технологических условиях оксидирования на поверхности металлических имплантатов формируется оксидное покрытие, содержащее наночастицы серебра с бактерицидными свойствами, которые за счет термодиффузионных процессов осаждения, протекающих при обработке имплантатов, встраиваются в структуру образуемой металлооксидной матрицы и распределяются по всему ее объему.
В качестве оксидируемых металлических материалов чрескостных имплантатов могут использоваться титановые сплавы медицинского назначения марок ВТ6, ВТ16, нержавеющие хромоникелевые стали марок 12Х18Н9Т, 12Х18Н10Т, а также сплавы на основе тантала и циркония.
Значения температуры оксидирования меньше 500°C не позволяют получить пористую структуру оксидного покрытия, необходимую для интеграционного взаимодействия с костью, а значения температуры оксидирования свыше 550°C приводят к образованию покрытия повышенной толщины (200-250 мкм), которое характеризуется низким уровнем механической прочности (микротвердости и адгезии).
Значения давления подачи смеси перегретого водяного пара и наночастиц серебра в рабочий объем печи меньше чем 1,2 атм, не позволяют обеспечить интенсивное протекание окислительных реакций на поверхности металлических имплантатов и не обеспечивают получение оксидного покрытия с заданными характеристиками. Значения давления подачи смеси перегретого водяного пара и наночастиц серебра в рабочий объем печи больше чем 1,3 атм, приводят к нежелательному росту толщины оксидного покрытия до 200 мкм и более, что оказывает отрицательное влияние на его механическую прочность, существенно снижая показатели микротвердости и адгезии.
Значения продолжительности проведения оксидирования металлических имплантатов от 1,5 ч до 2,0 ч обеспечивают получение оксидного серебросодержащего покрытия с повышенным уровнем биосовместимости и бактерицидными свойствами. Отклонение от указанных пределов значений не позволяет сформировать оксидное покрытие с бактерицидными свойствами, способное эффективно выполнять свои медико-технические функции на имплантатах для наружного чрескостного остеосинтеза.
Соотношение компонентов в смеси должно быть следующим:
перегретый водяной пар - 95-98%,
наночастицы серебра - 2-5%.
При содержании наночастиц серебра в смеси меньше 2% и содержании перегретого водяного пара в смеси более 98%, не удается получить оксидное покрытие с высокими бактерицидными свойствами из-за недостаточного содержания наночастиц серебра в покрытии для создания эффективных бактерицидных процессов.
Содержание наночастиц серебра в смеси больше 5% при содержании перегретого водяного пара в смеси менее 95% является экономически не целесообразным, т.к. содержание наночастиц серебра в смеси в пределах от 2% до 5% позволяет получить оксидное покрытие с содержанием бактерицидных наночастиц серебра, достаточным для полного исключения микробной активности на границе с имплантатом.
Соотношение компонентов в получаемом покрытии следующее, масс.%:
оксиды металлов, входящих в химический состав сплавов - 97-99;
серебро - 1-3.
Пример 1. Берут чрескостный титановый имплантат и проводят предварительную обработку его поверхности с помощью пескоструйной обдувки корундовым абразивом и ультразвукового обезжиривания в моющем растворе для создания исходной микрошероховатости и очистки металлической поверхности. Предварительно подготовленный для нанесения покрытия имплантат помещают в камеру печи с температурой 500°C и продувают рабочий объем печи перегретым водяным паром при давлении 3-4 атм в течение 3-5 сек для удаления воздуха. Затем в камеру печи под постоянным давлением 1,3 атм подают смесь перегретого водяного пара и наночастиц серебра при соотношении компонентов в смеси: перегретый водяной пар - 98%, наночастицы серебра - 2%. Процесс получения покрытия ведут в течение 2,0 ч, после чего прекращают подачу смеси перегретого водяного пара и наночастиц серебра, включают подачу чистого пара, снижают нагрев печи до температуры 250-300°C и производят охлаждение оксидированного имплантата до указанной температуры, затем его извлекают из печи и охлаждают на воздухе до температуры 20-30°C.
Пример 2. Берут чрескостный стальной имплантат и проводят предварительную обработку его поверхности с помощью пескоструйной обдувки корундовым абразивом и ультразвукового обезжиривания в моющем растворе для создания исходной микрошероховатости и очистки металлической поверхности. Предварительно подготовленный для нанесения покрытия имплантат помещают в камеру печи с температурой 550°C и продувают рабочий объем печи перегретым водяным паром при давлении 3-4 атм в течение 3-5 сек для удаления воздуха. Затем в камеру печи под постоянным давлением 1,2 атм подают смесь перегретого водяного пара и наночастиц серебра при соотношении компонентов в смеси: перегретый водяной пар - 95%, наночастицы серебра - 5%. Процесс получения покрытия ведут в течение 1,5 ч, после чего прекращают подачу смеси перегретого водяного пара и наночастиц серебра, включают подачу чистого пара, снижают нагрев печи до температуры 250-300°C и производят охлаждение оксидированного имплантата до указанной температуры, затем его извлекают из печи и охлаждают на воздухе до температуры 20-30°C.
Получаемое оксидное серебросодержащее покрытие с бактерицидными свойствами имеет следующие характеристики: толщину - 20-80 мкм, суммарную открытую пористость - 20-60%, микротвердость - 4-5 ГПа, адгезию 25-29 МПа.
Положительный эффект предлагаемого изобретения, заключающийся в повышении эффективности приживления имплантатов с оксидным биосовместимым покрытием и минимизации опасности возникновения воспалительных явлений в тканях, достигается за счет создания технологически простого способа получения оксидного биосовместимого покрытия с бактерицидными свойствами на металлических имплантатах для наружного чрескостного остеосинтеза. Способ позволяет создать техническую возможность формирования оксидного серебросодержащего покрытия путем обработки металлических имплантатов в смеси перегретого водяного пара и наночастиц серебра при температуре 500-550°C, давлении подачи смеси 1,2-1,3 атм в течение 1,5-2,0 ч. При этом соотношение компонентов в смеси следующее: перегретый водяной пар - 95-98%, наночастицы серебра - 2-5%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО ПОКРЫТИЯ НА СТАЛЬНЫХ ЧРЕСКОСТНЫХ ИМПЛАНТАТАХ | 2014 |
|
RU2542409C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ЧРЕКОСТНЫХ ИМПЛАНТАТАХ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2013 |
|
RU2519095C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ЧРЕСКОСТНЫХ ИМПЛАНТАТАХ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2009 |
|
RU2412723C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ОСТЕОФИКСАТОРАХ ИЗ ТИТАНА | 2006 |
|
RU2332239C1 |
Способ формирования оксидных покрытий на изделиях из нержавеющих хромоникелевых сталей | 2018 |
|
RU2689485C1 |
СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ | 2014 |
|
RU2581824C1 |
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ | 2015 |
|
RU2604085C1 |
ОСТЕОИНТЕГРАЦИОННОЕ ПОКРЫТИЕ НА ОРТОПЕДИЧЕСКИЕ И СТОМАТОЛОГИЧЕСКИЕ ТИТАНОВЫЕ ИМПЛАНТАТЫ | 2011 |
|
RU2472532C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНСОДЕРЖАЩЕГО ПОКРЫТИЯ | 2012 |
|
RU2494764C1 |
СПОСОБ ФОРМИРОВАНИЯ ОКСИДНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2015 |
|
RU2611617C1 |
Изобретение относится к области медицинской техники, а именно к способу получения оксидного биосовместимого покрытия на чрескостном металлическом имплантате. Способ заключается в оксидировании имплантата в смеси перегретого водяного пара и наночастиц серебра при температуре 500-550°C, давлении подачи смеси 1,2-1,3 атм в течение 1,5-2,0 ч при предварительном удалении воздуха из рабочего объема печи путем подачи в него под давлением 3-4 атм перегретого пара. Охлаждение оксидированных имплантатов проводят сначала в печи в среде чистого пара до температуры 250-300°C, а затем на воздухе до температуры 20-30°C. Способ является технологически простым и позволяет получить оксидное биосовместимое покрытие с бактерицидными свойствами на металлических имплантатах для наружного чрескостного остеосинтеза. 1 з.п. ф-лы, 2 пр.
1. Способ получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза, включающий оксидирование имплантатов в атмосфере перегретого водяного пара при температуре 500-550°C, давлении подачи пара 1,2-1,3 атм в течение 1,5-2,0 ч при предварительном удалении воздуха из рабочего объема печи путем подачи в него под давлением 3-4 атм перегретого пара, охлаждение оксидированных имплантатов сначала в печи в среде пара до температуры 250-300°C, а затем на воздухе до температуры 20-30°C, отличающийся тем, что оксидирование имплантатов проводят в смеси перегретого водяного пара и наночастиц серебра.
2. Способ получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза по п. 1, отличающийся тем, что соотношение компонентов в смеси перегретого водяного пара и наночастиц серебра следующее: перегретый водяной пар - 95-98%, наночастицы серебра - 2-5%.
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ОСТЕОФИКСАТОРАХ ИЗ ТИТАНА | 2006 |
|
RU2332239C1 |
ОКСИДНОЕ ПОКРЫТИЕ НА ЧРЕСКОСТНЫЕ ОРТОПЕДИЧЕСКИЕ ИМПЛАНТАТЫ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2011 |
|
RU2465015C1 |
US 20090047413 A1, 19.02.2009 | |||
РОДИОНОВ И.В., Исследование приживляемости медицинских титановых имплантатов с паротермическим серебросодержащим оксидным покрытием, Маtеrialy VII Miedzynarodowej naukowi-praktycznej konferencji "Perspektywiczne opracowania sa nauka i technikami " 2011", 07-15 |
Авторы
Даты
2015-04-20—Публикация
2014-05-20—Подача