СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ Российский патент 2016 года по МПК A61L27/30 A61L27/32 A61L31/08 A61L31/16 B82B1/00 

Описание патента на изобретение RU2581824C1

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические внутрикостные и чрескостные имплантаты.

Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биосовместимых металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костной ткани за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является газотермическое напыление, заключающееся в пропускании порошка гидроксиапатита через высокотемпературную область частично ионизированного газа, нагревании, плавлении и придании кинетической энергии частицам порошка с последующим их осаждением на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия наиболее широко распространенным газотермическим (плазменным) методом является технологически сложным процессом и характеризуется низким коэффициентом использования порошка, т.е. низкой технико-экономической эффективностью. При этом данный метод не позволяет наносить биокерамические гидроксиапатитовые покрытия, содержащие серебро в качестве бактерицидного компонента, служащего для повышения уровня приживляемости имплантатов.

Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].

Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия на имплантаты, а также отсутствие технической возможности получения серебросодержащего покрытия с бактерицидными свойствами.

Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600°С [патент РФ №2158189, МПК B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].

Недостатком данного способа является отсутствие технической возможности получения серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоно-плазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.

Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования, а также отсутствие технической возможности, обеспечивающей получение серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Задачей изобретения является создание технологически простого и эффективного способа нанесения серебросодержащего гидроксиапатитового покрытия на металлические имплантаты.

Технический результат изобретения заключается в обеспечении бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов, а также в создании технологически простых условий нанесения серебросодержащего гидроксиапатитового покрытия.

Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению, в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. При этом происходит эффективный нагрев поверхности имплантата с нанесенной суспензией, состоящей из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, до температуры 900-950°С, обеспечивающей формирование биокерамического покрытия путем плавления фосфатной связки и протекания твердофазных превращений с получением механической смеси, обладающей бактерицидными свойствами.

Сущность изобретения заключается в следующем.

Получение биокерамического покрытия на металлических имплантатах осуществляют путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Данные условия позволяют технологически просто и эффективно формировать на поверхности металлических имплантатов механически прочное биокерамическое покрытие на основе гидроксиапатита, содержащее в качестве бактерицидного компонента наночастицы серебра.

При этом порошок гидроксиапатита смешивают со связующим веществом, содержащим наночастицы серебра, для предварительного удержания частиц гидроксиапатитового порошка и серебра на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного эффективного плавления фосфатной связки и протекания твердофазных превращений с получением биокерамического покрытия из механической смеси, обладающей бактерицидными свойствами.

Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с наночастицами серебра для придания поверхности имплантатов бактерицидных свойств.

Содержание в суспензии из фосфатной связки и порошка гидроксиапатита наночастиц серебра в пределах соотношения суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 является наиболее эффективным для придания биокерамическому покрытию бактерицидных свойств. При содержании наночастиц серебра в суспензии меньше указанного нижнего предела соотношения не позволяет получить покрытие с выраженной бактерицидной активностью, а содержание наночастиц серебра в суспензии больше указанного верхнего предела соотношения является экономически нецелесообразным, т.к. при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 достигаются наилучшие медико-технические условия безопасного и ускоренного приживления имплантатов с гидроксиапатитовыми покрытиями.

Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах с нанесенной суспензией из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, при значениях потребляемой электрической мощности менее 0,20 кВт, частоте тока на индукторе ниже диапазона 90±10 кГц и продолжительности термообработки менее 1,0 мин является не эффективным, т.к. образующееся покрытие склонно к механическому разрушению при действии функциональных нагрузок на имплантат.

Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,25 кВт, частоте тока на индукторе свыше 90±10кГц и продолжительности термообработки более 1,5 мин приводит к нежелательным фазовым и структурным превращениям серебра в составе биокерамического покрытия, что, в результате, существенно снижает его бактерицидные свойства (происходит агрегация наночастиц серебра в более крупные микрометровые частицы с меньшей бактерицидной активностью).

Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 900-950°С, что обеспечивает необходимое термическое воздействие на суспензию из фосфатной связки, порошка гидроксиапатита и наночастиц серебра для получения прочного биокерамического покрытия с бактерицидными свойствами.

Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0:0,03. С помощью кисти или путем окунания полученную серебросодержащую суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной серебросодержащей суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,20 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,5 мин. При этом температура нагрева имплантата составляет 900°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее высокими биоактивными и бактерицидными свойствами.

Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,1:0,01. С помощью кисти или путем окунания суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 950°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее наряду с биологической активностью высокими бактерицидными свойствами.

Положительный эффект предлагаемого изобретения - обеспечение бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов - заключается в создании технологически простых и эффективных условий нанесения серебросодержащего гидроксиапатитового покрытия, при которых осуществляют смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, которую затем наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Похожие патенты RU2581824C1

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ 2014
  • Родионов Игорь Владимирович
  • Фомин Александр Александрович
  • Пошивалова Елена Юрьевна
  • Фомина Марина Алексеевна
  • Петрова Наталия Владимировна
RU2571080C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ ПОРОШКОВЫМИ БИОКЕРАМИЧЕСКИМИ МАТЕРИАЛАМИ 2014
  • Родионов Игорь Владимирович
RU2549984C1
СПОСОБ НАНЕСЕНИЯ БИОАКТИВНОГО ПОКРЫТИЯ НА ТИТАНОВЫЕ ИМПЛАНТАТЫ 2018
  • Гузеев Виталий Васильевич
  • Гузеева Татьяна Ивановна
  • Гурова Оксана Александровна
  • Зеличенко Елена Алексеевна
  • Ковальская Яна Борисовна
  • Кузьманин Станислав Александрович
  • Нестеренко Андрей Александрович
RU2684617C1
Способ нанесения биоактивного покрытия на титановую пластину для остеосинтеза 2020
  • Абдуллин Рафис Рафаэлевич
  • Вейнов Виктор Павлович
RU2745534C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКИХ ИМПЛАНТАТАХ ДЛЯ НАРУЖНОГО ЧРЕСКОСТНОГО ОСТЕОСИНТЕЗА 2014
  • Родионов Игорь Владимирович
RU2548740C1
СПОСОБ НАНЕСЕНИЯ ГИДРОКСИАПАТИТОВОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ 2009
  • Родионов Игорь Владимирович
RU2417107C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ 2013
  • Лясникова Александра Владимировна
  • Дударева Олеся Александровна
RU2530573C1
СПОСОБ ФОРМИРОВАНИЯ СЕРЕБРОСОДЕРЖАЩЕГО БИОПОКРЫТИЯ ТИТАНОВОГО ИМПЛАНТАТА 2014
  • Перинская Ирина Владимировна
  • Перинский Владимир Владимирович
  • Пятакова Кристина Сергеевна
  • Частова Марина Васильевна
  • Перинская Есения Дмитриевна
RU2581825C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С АНТИМИКРОБНЫМ ЭФФЕКТОМ 2013
  • Мельникова Ираида Прокопьевна
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
RU2512714C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТОВ 2013
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
  • Дударева Олеся Александровна
  • Гришина Ирина Петровна
RU2529262C1

Реферат патента 2016 года СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата, сушат и проводят последующую термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. Способ является технологически простым и позволяет эффективно наносить серебросодержащее гидроксиапатитовое покрытие с бактерицидными свойствами на металлические имплантаты. 2 пр.

Формула изобретения RU 2 581 824 C1

Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Документы, цитированные в отчете о поиске Патент 2016 года RU2581824C1

СПОСОБ НАНЕСЕНИЯ ГИДРОКСИАПАТИТОВОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ 2009
  • Родионов Игорь Владимирович
RU2417107C1
КОМПОЗИЦИИ И СПОСОБЫ ПОКРЫТИЯ МЕДИЦИНСКИХ ИМПЛАНТАТОВ 2003
  • Хантер Уильям Л.
  • Граветт Дэвид М.
  • Толейкис Филип М.
  • Лиггинс Ричард Т.
  • Лосс Трой А.Е.
RU2341296C2
Способ обработки шламов медно-электролитного производства 1925
  • Баробошкин Н.Н.
SU12091A1

RU 2 581 824 C1

Авторы

Родионов Игорь Владимирович

Фомин Александр Александрович

Пошивалова Елена Юрьевна

Фомина Марина Алексеевна

Даты

2016-04-20Публикация

2014-11-12Подача