СПОСОБ ПЕРЕДАЧИ ДАННЫХ Российский патент 2015 года по МПК H04L29/00 

Описание патента на изобретение RU2550518C2

Изобретение относится к технике связи, а именно к способам передачи информации от датчиков физических величин с использованием интерфейса токовой петли. Преимущественно оно может быть использовано в системах пожарной сигнализации для сбора информации от пожарных датчиков. Причем этот способ может быть использован для получения информации от различных устройств, выдающих данные в цифровом или аналоговом виде.

Известны различные способы передачи данных с помощью интерфейса цифровой токовой петли. Например, известен способ передачи данных с помощью интерфейса цифровой токовой петли, который первоначально нашел применение в телетайпных аппаратах, а потом для радиального подключения различных устройств с последовательной передачей информации (ИРПС) (см. с. 4, ГОСТ 27696-88. Роботы промышленные. Интерфейсы. Технические требования, а также ГОСТ 28854-90 Интерфейс последовательный радиального типа для автоматизированных систем управления рассредоточенными объектами. Общие технические требования). В известном способе передачи данных с помощью интерфейса цифровой токовой петли, выдающего данные в цифровом виде, используют низкий уровень тока от 0 до 3 мА как значение логического нуля. Вместе с тем в этом способе используют и высокий уровень тока от 15 до 25 мА как значение логической единицы. Данные передают стартстопным методом, формат посылки совпадает с RS-232, например 8-N-1:8 бит, без паритета, 1 стоп-бит. В известном способе ИРПС обеспечивают передачу данных со скоростью до 19,2 кбит/с на расстояние до 500 м. Этот способ передачи данных с помощью интерфейса цифровой токовой петли широко применялся в компьютерах, в основном выпускавшихся в СССР и странах СЭВ до 90-х годов двадцатого века. Этот же способ передачи данных в несколько измененном виде применялся и за рубежом. Он описан в стандарте IEC 62056-21 (см. с. 19 IEC 62056-21 International Standard. Electricity metering - Data exchange for metering reading, tariff and load control - Part 21: Direct local data exchange. Преимуществом известного способа передачи данных с помощью интерфейса цифровой токовой петли является высокая помехозащищенность, которая в свою очередь позволяет передавать сигналы на значительные расстояния, вплоть до нескольких километров. Но известный способ имеет крупный недостаток, состоящий в низкой скорости передачи данных.

Этот недостаток способа передачи данных с помощью интерфейса цифровой токовой петли не присущ известному способу передачи данных с помощью аналоговой токовой петли (см. с. 3 ГОСТ 27696-88. Роботы промышленные. Интерфейсы. Технические требования, а также с. 2 ГСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные). Этот способ передачи данных является наиболее близким решением к заявляемому (прототипом). В способе-прототипе аналоговую токовую петлю используют для передачи аналогового сигнала по паре проводов в лабораторном оборудовании, системах управления и т.д. Причем в описываемом способе-прототипе применяют смещенный диапазон от 4 до 20 мА, то есть наименьшее значение сигнала соответствует току 4 мА, а наибольшее - 20 мА. Таким образом, весь диапазон допустимых значений занимает 16 мА. Нулевое значение тока в цепи означает обрыв линии и позволяет легко диагностировать такую ситуацию. Описываемый способ передачи данных с помощью интерфейса аналоговой токовой петли используют для получения данных с разнообразных датчиков, например, датчиков давления, температуры и т.д. Также этот способ используют для управления регистрирующими и исполнительными устройствами: самописцами, заслонками и т.д. Его преимуществом является также точность передачи данных, которая не зависит от длины и сопротивления линии передачи, поскольку управляемый источник тока будет автоматически поддерживать требуемый ток в линии. Кроме того, при использовании этого способа, можно «запитывать» датчик непосредственно от линии передачи. Но необходимо отметить, что в данном способе по линии связи возможна передача только одного потока информации, например, текущего значения температуры. Это и является его крупным недостатком.

Задача, которую поставил перед собой разработчик нового способа передачи данных, состояла в создании такого способа, который позволил бы передавать данные с высокой степенью точности и помехоустойчивости, с отсутствием чувствительности к длине линии, а также передавать данные с высокой скоростью и на большие расстояния.

Техническим результатом заявляемого способа явилась большая помехозащищенность передачи данных, а также возможность запитывания датчика непосредственно от линии передачи.

Сущность изобретения состоит в том, что в способе передачи данных с помощью интерфейса токовой петли последовательно передают по одним и тем же линиям связи несколько аналоговых, а также цифровых параметров, причем цифровые данные передают после передачи аналоговых данных с привязкой ко второму синхроимпульсу, сформированному микроконтроллером датчика, цифровые данные передают побайтно с разбиением диапазона тока на 256 поддиапазонов, а передачу управляющих команд с приемника, включающего программируемый микроконтроллер, на датчик осуществляют путем изменения времени включения питания на линии, при этом в зависимости от принятой управляющей команды датчиком осуществляют разные действия.

Вместе с тем, сущность изобретения состоит и в том, что в способе передачи данных с помощью интерфейса токовой петли, диапазон тока в линии принимают в пределах от 4 до 20 мА.

Заявляемый способ может быть реализован, например, при осуществлении взаимодействия и управления многофункциональным пожарным датчиком, а также получения от него необходимой информации со стороны устройства сбора информации.

Изобретение поясняется графически, где на фиг. 1 изображена схема устройства для реализации способа передачи данных с помощью интерфейса токовой петли между пожарным датчиком и приемным устройством.

Устройство для реализации способа передачи данных с помощью интерфейса токовой петли состоит из приемного устройства 1, в которое входит микроконтроллер 2. К выходу микроконтроллера 2 подключен управляющий вход электронного ключа 3. Источник питания постоянного тока 4 через электронный ключ 3 соединен с пожарным датчиком 5 линией связи 6. К входу микроконтроллера 2 подключен аналого-цифровой преобразователь (АЦП) 7, ко входу которого присоединен измерительный резистор 8. Измерительный резистор 8 подключен последовательно к линии связи 6, что позволяет производить измерение тока в петле. Микроконтроллер 2 через шину данных 9 связан с внешним управляющим устройством - пультом центрального наблюдения системы пожарной сигнализации 10. А пожарный датчик 5 состоит из микроконтроллера 11, соединенного с датчиком температуры 12 и дымовой камерой 13. Вход микроконтроллера 11 соединен с вторичным источником питания 14, а его выход - с управляемым генератором тока 15. Один из выходов контроллера 11 подключен к устройству световой индикации «Пожар» 16.

Новый способ передачи данных с помощью интерфейса токовой петли осуществляют следующим образом. С помощью микроконтроллера 2 приемного устройства 1 с заданной периодичностью и длительностью через электронный ключ 3 коммутируют напряжение с источника питания постоянного тока 4 на пожарный датчик 5. Коммутируют напряжение через линию связи 6. А с помощью пожарного датчика 5 в зависимости от длительности прихода напряжения питания выполняют разные действия. При этом значения интервалов времени разделяют на первый, второй и третий. Они соответствуют трем управляющим командам: «измерение», «измерение с тестированием и выдачей его результатов» и «измерение с тестированием и включением световой индикации».

Работу пожарного датчика 5 в режиме измерения осуществляют следующим образом. С помощью приемного устройства 1 подают питание на пожарный датчик 5 в течение времени, равного первому интервалу. Эту операцию выполняют с помощью микропроцессора 2 путем подачи управляющего сигнала заданной длительности на управляющий вход электронного ключа 3. При этом с помощью электронного ключа 3 коммутируют напряжение источника питания 4 на линию связи 6. А непосредственно передачу данных осуществляют следующим образом. С помощью микроконтроллера 11 пожарного датчика 5 получают напряжение питания и величину длительности интервала времени с линии связи 6 через вторичный источник питания 14. Значения температуры получают с датчика температуры 12. Уровень задымленности в дымовой камере 13 получают также с помощью микроконтроллера 11. Далее с помощью микроконтроллера 11, а также управляемого генератора тока 15 формируют в токовой петле ответный короткий синхронизирующий импульс заданной амплитуды. После этого в течение двух коротких временных промежутков с помощью микроконтроллера 11 передают последовательно аналоговые значения температуры от датчика температуры 12 и уровня задымленности в дымовой камере 13. Аналоговые значения температуры и уровня задымленности передают величинами постоянного тока в диапазоне от 4 до 20 мА и с привязкой ко времени к синхронизирующему импульсу. А прием данных осуществляют следующим образом. С помощью микроконтроллера 2 приемного устройства 1 через АЦП 7 с определенным темпом считывают значения тока в линии связи 6. Это осуществляют путем измерения падения напряжения на измерительном резисторе 8 и заносят эти измерения в оперативную память микроконтроллера 2. По истечении первого интервала времени, которое соответствует управляющей команде «измерение», с помощью микроконтроллера 2 приемного устройства 1 снимают питание с пожарного датчика 5. Затем программным способом при помощи микроконтроллера 2 выделяют из зафиксированных отсчетов тока время прихода синхронизирующего импульса. Фиксируют отсчеты АЦП 7 в моменты, соответствующие передаче данных температуры и уровня задымленности пожарным датчиком 5. Эти моменты времени определяют в течение каждого информационного импульса тока окончанием переходных процессов установления тока в цепи. После этого с помощью микроконтроллера 2 программно преобразуют эти значения тока в соответствующие физические величины температуры и оптической плотности среды. Далее с помощью микроконтроллера 2 выдают эти преобразованные величины для дальнейшей обработки через шину данных 9 на пульт центрального наблюдения системы пожарной сигнализации 10.

Работу пожарного датчика 5 в режиме тестирования проводят следующим образом. С помощью приемного устройства 1 включают питание на пожарный датчик 5 в течение времени, равного второму интервалу. Этот интервал соответствует второй управляющей команде - «измерение с тестированием и выдачей результатов тестирования», который по длительности больше первого интервала. Эту операцию осуществляют с помощью микроконтроллера 2 путем подачи управляющего сигнала заданной длительности на управляющий вход электронного ключа 3. При этом электронный ключ 3 коммутирует напряжение источника питания 4 на линию связи 6 аналогично тому, как это производится при формировании первой управляющей команды. В течение первого интервала времени с помощью пожарного датчика 5 выполняют действия, как описано выше. Но если с помощью микроконтроллера 11 пожарного датчика 5 фиксируют наличие напряжения питания после окончания первого временного интервала, то в данном случае начинают осуществлять выполнение операции режима тестирования. Далее, после завершения операций тестирования, с помощью микроконтроллера 11 пожарного датчика 5 и генератора тока 15 формируют второй синхронизирующий импульс, аналогичный первому. По окончании этого импульса передают результат тестирования. Результат тестирования представляет собой аналоговое значение собственной температуры датчика температуры 12 в режиме его проверки в виде импульса постоянного тока в диапазоне от 4 до 20 мА, привязанного к указанному синхронизирующему импульсу. После этого передают цифровые данные, включающие заводской номер пожарного датчика, информацию о производителе, типе прибора и дате его выпуска в цифровом виде представления информации. Передачу данных осуществляют способом передачи импульсов тока в петле, побайтно, путем разбиения диапазона тока 4-20 мА на 256 поддиапазонов тока (по количеству значений кодов в байте) и передачей каждого байта в течение коротких промежутков времени с привязкой к второму синхроимпульсу. Передаваемые цифровые данные содержат поле синхронизации, данные и циклическую контрольную сумму для защиты от ошибок. С помощью микроконтроллера 2 приемного устройства 1 через АЦП 7 считывают отсчеты значения тока. Это осуществляют в определенном темпе в линии связи 6. Причем делают это путем измерения падения напряжения на измерительном резисторе 8. Далее эти цифровые данные заносят в оперативную память микроконтроллера 2. По истечении второго интервала времени с помощью микроконтроллера 2 приемного устройства 1 отключают питание с пожарного датчика 5. Затем программным способом выделяют из зафиксированных отсчетов тока время прихода второго синхронизирующего импульса, а также фиксируют отсчеты АЦП 7 в моменты времени, соответствующие передаче данных с результатом тестирования, и цифровые данные с информацией о производителе, типе прибора и дате выпуска в моменты времени. После этого с помощью микроконтроллера 2 программно преобразуют указанные значения тока в соответствующие данные и выдают их на пульт центрального наблюдения системы пожарной сигнализации 10 для дальнейшей обработки. Включение устройства световой индикации «Пожар» пожарного датчика производят следующим образом. На время третьего интервала времени, соответствующего третьей управляющей команде - «измерение с тестированием и включением световой индикации», коммутируют питание на пожарный датчик 5. Это производят с помощью микроконтроллера 2 приемного устройства 1. В течение второго интервала времени с пожарного датчика 5 передают данные, как было описано выше. Но если с помощью пожарного датчика 5 фиксируют наличие напряжения питания после окончания второго интервала времени, то в данном случае осуществляют выполнение операции по включению режима световой индикации. Это производят с помощью микроконтроллера 11 пожарного датчика 5 подачей управляющего напряжения на устройство световой индикации «Пожар» 16. Устройство световой индикации «Пожар» 16 работает до момента отключения напряжения питания приемным устройством 1 на пожарном датчике 5.

Применение заявляемого способа передачи данных между приемным устройством и пожарным датчиком с помощью токовой петли позволило уменьшить время обмена данными, включающими совокупность нескольких параметров между датчиком и приемным устройством. Кроме того, применение заявляемого способа позволило сохранить высокую помехоустойчивость канала связи в условиях воздействия индустриальных помех, сохранить высокую точность при передаче аналоговых величин, сэкономить значительное количество электроэнергии преимущественно при работе в режиме измерения и, следовательно, улучшить параметры энергопотребления системы пожарной сигнализации в режиме работы от резервной батареи, а также увеличить ресурс работы пожарных датчиков.

Похожие патенты RU2550518C2

название год авторы номер документа
ПРИЕМОПЕРЕДАТЧИК ИНТЕРФЕЙСА 4-20мА 2012
  • Пономарев Александр Юрьевич
RU2546576C2
Способ предварительной обработки аналоговых сигналов с сенсоров накладного акустического расходомера и устройство для его осуществления 2023
  • Кривоногов Алексей Александрович
  • Есарев Максим Александрович
  • Гонтарев Кирилл Артурович
RU2816283C1
МОБИЛЬНЫЙ МЕТЕОКОМПЛЕКС 2021
  • Бояршинова Виктория Дмитриевна
RU2773253C1
УСТРОЙСТВО СОПРЯЖЕНИЯ АДРЕСНОЙ ПОЖАРНОЙ СИГНАЛИЗАЦИИ 2008
RU2371773C1
БЛОК КОНТРОЛЯ И УПРАВЛЕНИЯ 2004
  • Кадников Леонид Николаевич
  • Живодров Сергей Николаевич
  • Сорокин Михаил Николаевич
  • Глухов Алексей Геннадьевич
  • Логунов Михаил Васильевич
  • Александрова Валентина Николаевна
  • Ембулаева Татьяна Васильевна
  • Лакейкина Тамара Николаевна
RU2275669C1
СИСТЕМА ФУНКЦИОНАЛЬНОГО ТЕСТИРОВАНИЯ КОРПУСИРОВАННЫХ МИКРОСХЕМ ОПЕРАТИВНО ЗАПОМИНАЮЩИХ УСТРОЙСТВ 2009
  • Сашов Александр Анатольевич
  • Краснов Михаил Игоревич
RU2438164C2
МОДУЛЬ БЕСШЛЕЙФОВОЙ ДИАГНОСТИКИ ПРИЕМНЫХ КАТУШЕК И ПРИЕМНИКОВ АВТОМАТИЧЕСКОЙ ЛОКОМОТИВНОЙ СИГНАЛИЗАЦИИ 2016
  • Татаринов Вадим Викторович
  • Нарышкин Вячеслав Леонидович
RU2653657C1
АВТОНОМНОЕ САМОЗАПИТЫВАЮЩЕЕСЯ РЕЛЕ С ЧИСЛОВЫМ УПРАВЛЕНИЕМ 2008
  • Сутхар Нирадж
  • Шах Виджай
  • Виас Маулик
  • Дек Бернхард
RU2463693C2
Способ измерения коэффициента экранирования на испытательных участках контрольных пунктов автоматической локомотивной сигнализации и устройство для его осуществления 2022
  • Грачев Гаврил Николаевич
  • Щукин Олег Ильич
  • Головин Алексей Николаевич
  • Кузьмин Владислав Сергеевич
  • Меркулов Павел Михайлович
RU2780712C1
СПОСОБ КОНТРОЛЯ И УЧЕТА ВРЕМЕНИ НАРАБОТКИ ЭЛЕКТРОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Бартенев Владимир Григорьевич
RU2338210C1

Реферат патента 2015 года СПОСОБ ПЕРЕДАЧИ ДАННЫХ

Изобретение относится к технике связи, а именно к способам передачи информации от датчиков физических величин с использованием интерфейса токовой петли. Техническим результатом заявляемого способа является большая помехозащищенность передачи данных, а также возможность запитывания датчика непосредственно от линии передачи. Сущность изобретения состоит в том, что в способе передачи данных с помощью интерфейса токовой петли последовательно передают по одним и тем же линиям связи несколько аналоговых, а также цифровых параметров, причем цифровые данные передают после передачи аналоговых данных с привязкой ко второму синхроимпульсу, сформированному микроконтроллером датчика, цифровые данные передают побайтно с разбиением диапазона тока на 256 поддиапазонов, а передачу управляющих команд с приемника, включающего программируемый микроконтроллер, на датчик осуществляют путем изменения времени включения питания на измерение, или измерение с тестированием и выдачей его результатов, или измерение с тестированием и включением цветовой индикации. Вместе с тем сущность изобретения состоит и в том, что в способе передачи данных с помощью интерфейса токовой петли диапазон тока в линии принимают в пределах от 4 до 20 мА. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 550 518 C2

1. Способ передачи данных с помощью интерфейса токовой петли, отличающийся тем, что в способе последовательно передают по одним и тем же линиям связи несколько аналоговых, а также цифровых параметров, причем цифровые данные передают после передачи аналоговых данных с привязкой ко второму синхроимпульсу, сформированному микроконтроллером датчика, цифровые данные передают побайтно с разбиением диапазона тока на 256 поддиапазонов, а передачу управляющих команд с приемника, включающего программируемый микроконтроллер, на датчик осуществляют путем изменения времени включения питания на линии, при этом в зависимости от принятой управляющей команды датчиком осуществляют измерение, или измерение с тестированием и выдачей его результатов, или измерение с тестированием и включением цветовой индикации.

2. Способ передачи данных с помощью интерфейса токовой петли по п. 1, отличающийся тем, что диапазон тока в линии принимают в пределах от 4 до 20 мА.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550518C2

БЛОК (ВАРИАНТЫ) И СПОСОБ СОПРЯЖЕНИЯ ДЛЯ ОБМЕНА ИНФОРМАЦИЕЙ МЕЖДУ КОМПЬЮТЕРОМ И ПОЛЕВЫМ ПРИБОРОМ 2007
  • Шумахер Марк С.
RU2434270C2
ТРАНСПОРТЕР 1931
  • Баранов Ю.Г.
SU29789A1
СИСТЕМА ДЛЯ ИЗГОТОВЛЕНИЯ ИМЕЮЩЕГО МОДУЛЬНУЮ КОНСТРУКЦИЮ УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ И УНИФИЦИРОВАННЫЕ КОМПОНЕНТЫ 2003
  • Ференбах Йозеф
  • Мотцер Юрген
  • Гриссбаум Карл
RU2342639C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 2009
  • Коровин Владимир Андреевич
  • Коровин Константин Владимирович
RU2396528C1
Система обмена данными в вычислительной сети 1991
  • Вьюнник Владимир Кузьмич
  • Капустин Александр Михайлович
  • Могутин Роман Иванович
  • Сорокин Николай Иванович
  • Тимонькин Григорий Николаевич
  • Ткаченко Сергей Николаевич
  • Топорков Валентин Васильевич
  • Харченко Вячеслав Сергеевич
SU1807493A1
МУЛЬТИПЛЕКСОР ТЕЛЕКОММУНИКАЦИОННЫЙ МНОГОФУНКЦИОНАЛЬНЫЙ 2004
  • Соков Михаил Васильевич
  • Кочегаров Павел Юрьевич
  • Шмырёв Виталий Николаевич
  • Калинина Ольга Ивановна
  • Зябирова Лилия Иматовна
  • Сизов Александр Дмитриевич
  • Оськин Валерий Анатольевич
RU2269154C1
US 6377859 B1, 23.04.2002
US 6211649 B1, 03.04.2001

RU 2 550 518 C2

Авторы

Саутин Игорь Георгиевич

Ларионов Борис Александрович

Мельников Вячеслав Витальевич

Сильнягин Николай Николаевич

Даты

2015-05-10Публикация

2013-03-12Подача