ГИДРОАКУСТИЧЕСКИЙ СПОСОБ КОНТРОЛЯ СКОРОСТИ ПОТОКА ЖИДКИХ СРЕД В ТРУБОПРОВОДАХ Российский патент 2015 года по МПК G01F1/66 

Описание патента на изобретение RU2550758C1

Изобретение относится к области гидроакустической метрологии, а именно измерению параметров гидроакустического поля с помощью приемоизлучающих электроакустических преобразователей (ЭАП) в жидкой, прокачиваемой в трубах среде и может быть использовано в целях контроля скорости потока и объемов прокачиваемых сред.

Предмет предлагаемого изобретения (способ измерения скорости потока жидких сред) нашел свою реализацию как в виде результатов теоретических исследований, так и на практике - в виде специальных устройств, в частности, широко известны такие устройства с реализованными аналогами данного изобретения, как, например, бытовые и промышленные счетчики объемов прокачиваемых по трубопроводам газа, воды или горючего, использующие встроенные в эти среды механические и акустические датчики скорости потока жидких сред, причем последние могут быть и внешними, но имеющими акустико-механический контакт с трубопроводом. В литературных источниках отмечается использование и других полей, характеристики которых могут изменяться в зависимости от динамического состояния среды, например измерение скорости потока электропроводящих сред в магнитном поле по контролю индуцируемой при этом эдс [1-3].

Гидроакустические аналоги [4-9] имеют в своей основе различные виды контроля характеристик гидроакустического поля, создаваемого излучающими ЭАП в прокачиваемой среде, с помощью расположенных на определенном расстоянии от излучателей приемных ЭАП, а также электронных устройств, которые генерируют ультразвуковой сигнал, подаваемый на излучатель, и проводят анализ принятого приемником сигнала по его частотно-фазовым и корреляционно-временным параметрам. Главной характеристикой таких аналогов, реализуемой в конструкциях контролирующих устройств, является использование доплеровского эффекта - свойства изменения величины суммарного вектора скорости звука в прокачиваемой среде, воздействующего на приемный ЭАП, в зависимости от взаимного расположения векторов скорости звука в неподвижной среде и скорости потока среды, а именно, увеличение его при их совпадении и уменьшение - при противоположных направлениях последних, что приводит к флюктуациям указанных выше параметров принимаемого сигнала, используемых в целях контроля, в конечном итоге, скорости потока и объемов прокачиваемых сред.

В качестве прототипа изобретения выбран наиболее близкий к последнему из перечисленных аналогов способ контроля частотно-фазового сдвига, вызванного доплеровским эффектом между излученным и принятым сигналами, или коэффициента взаимной корреляции между ними [9], реализованный в портативном одноканальном ультразвуковом расходомере. Определение «одноканальный» принят в этом источнике для устройства, в состав которого кроме электроакустических излучателя и приемника а также электронных устройства излучения, обработки и отображения принятого сигнала, включен участок контролируемой среды, в то время как названное определение может быть отнесено к гидроакустическому каналу в целом, фактически включающем электрические каналы излучения, приема и объединяющую их в одну цепь водную среду.

Как нетрудно видеть, аппаратурная реализация приведенных аналогов, также как и выбранного прототипа, характеризуется необходимостью применения двухканальной схемы - наличием каналов излучения и приема, включающих электроакустические излучатели и приемники и соответствующие им электронные устройства излучения, обработки и отображения принятого сигнала. Преобладающее большинство реализации способов, принятых в качестве аналогов, имеют в своей основе использование встраиваемых гидроакустических датчиков внутри трубопроводов с соблюдением жестких требований по их взаимному расположению, что уменьшает их надежность и ремонтопригодность, а также полностью исключает такое необходимое в некоторых случаях свойство, как мобильность. Исключение составляет цитированный выше источник [9], в котором представлено описание реализации способа с «времяпролетным корреляционным измерением» в автономном устройстве. Однако, как правило, конструкция подобных устройств представляет собой встраиваемые в трубопровод блоки, обеспечивающие получение и передачу потребителям информацию по контролируемому параметру.

Техническим результатом изобретения является существенное упрощение реализуемых по заявляемому способу устройств со значительным снижением затрат на проектирование, разработку, а также установку и эксплуатацию, что повлечет за собой повышение их надежности, в общем смысле, и ремонтопригодности, в частном. Что касается такого параметра, как точность измерений, то реальные требования потребителей могут быть удовлетворены выбором конструкции электроакустических излучателей и соответствующим электронным обеспечением.

Указанный результат достигается использованием известного свойства электроакустических излучателей изменять свое сопротивление излучения, имеющее, как правило, комплексный характер, в соответствии с изменением характеристик среды - плотности, температуры и давления. Следовательно, контролируя соотношение величин активной и реактивной частей составляющих сопротивления излучения, можно получать информацию о характеристиках среды и их динамике, т.е. в нашем случае скорости потока при прокачивании жидких сред в трубопроводах. Наиболее полно указанное соотношение при работе генератора на комплексную нагрузку характеризует фазовый сдвиг между подводимым к излучателю электрическим напряжением и потребляемым им током, что и определяет выбор его (фазового сдвига) в качестве контролируемого параметра, в предлагаемом способе контроля потока жидких сред в трубопроводе.

Сопоставительный анализ предлагаемого способа с рассмотренными аналогами показывает, что заявляемый способ содержит, во-первых, результат решения известной задачи - оперативного контроля скорости потока жидких сред в трубопроводах - с новым объектом контроля, а именно электронной частью канала излучения гидроакустических сигналов, во-вторых, обоснование выбора нового контролируемого параметра - фазового сдвига между подводимым к излучателю напряжением и потребляемым им током и наконец, в-третьих, новую форму реализации этого способа - установку излучателя с акустико-механической связью с звукопроводящим трубопроводом на внешней его поверхности.

Практическая реализация данного изобретения может быть достигнута достаточно просто - исключением канала приема и введением устройства контроля обозначенного выше существенного отличительного признака (фазового сдвига) в канал излучения одного из аналогов.

Источники информации

1. Паршин В.М. Приборы и методы комплексных поточных измерений вязкости, плотности и скорости движения жидкости. М., Мет. 1990.

2. Гост 001.017.120.010 Измерение параметров потока жидкости в закрытых каналах.

3. Расходомеры. Физический энциклопедический словарь. М.: Советская энциклопедия, 1966, т.4, с.375.

4. Патент US №4032259, МПК7 G01F 1/66, 28.06.1977.

5. Патент РФ №2018089, МПК7 G01F 1/66, 15.08. 1994.

6. Патент РФ №2209401, МПК7, G01F 1/66, 06.07.2001.

7. Патент РФ №2180432, МПК7 G01F 1/66, 10.02.2002.

8. Патент РФ №2210062, МПК7 G01F 1/66, 11.06.2003.

9. Портативный одноканальный ультразвуковой расходомер с графическим дисплеем KATFlow 200. Каталог фирмы Inno-Tech (http://www. inno-tech.ru/catalog/1/19).

Похожие патенты RU2550758C1

название год авторы номер документа
ТРАКТ ИЗЛУЧЕНИЯ ГИДРОАКУСТИЧЕСКИХ СИГНАЛОВ 2007
  • Щеглов Геннадий Александрович
  • Колесникова Мария Николаевна
RU2353950C2
СПОСОБ КОНТРОЛЯ УРОВНЯ ЖИДКИХ И СЫПУЧИХ СРЕД В РЕЗЕРВУАРАХ 1999
  • Щеглов Г.А.
RU2180434C2
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ СИГНАЛОВ И ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИХ ИСТОЧНИК 2012
  • Долгих Валерий Николаевич
  • Ушаков Константин Александрович
RU2499276C1
ДВУХКООРДИНАТНЫЙ ЭХОЛОТ 2017
  • Щеглов Геннадий Александрович
  • Демидов Юрий Федорович
  • Попов Василий Анатольевич
  • Устименко Сергей Павлович
RU2681259C2
УСТРОЙСТВО КОМПЕНСАЦИИ КРИВИЗНЫ ФРОНТА ВОЛНЫ 2010
  • Колмогоров Владимир Степанович
  • Долгих Валерий Николаевич
  • Ламека Александр Петрович
  • Емельянов Евгений Сергеевич
RU2431153C1
Способ измерения скорости подводных течений 2022
  • Волощенко Вадим Юрьевич
  • Плешков Антон Юрьевич
  • Тарасов Сергей Павлович
  • Пивнев Петр Петрович
  • Воронин Василий Алексеевич
  • Волощенко Елизавета Вадимовна
RU2804343C1
ИЗМЕРИТЕЛЬ МАССЫ ЖИДКОСТИ, ТРАНСПОРТИРУЕМОЙ ПО НЕФТЕПРОВОДУ 2007
  • Куликовский Константин Лонгинович
  • Еремин Игорь Юрьевич
RU2352905C2
Акустический способ и устройство измерения параметров морского волнения 2019
  • Волощенко Вадим Юрьевич
  • Тарасов Сергей Павлович
  • Пивнев Петр Петрович
  • Воронин Василий Алексеевич
  • Волощенко Елизавета Вадимовна
  • Плешков Антон Юрьевич
RU2721307C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА КОМПОНЕНТОВ ДВУХФАЗНОГО ПОТОКА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Косарев Владимир Иванович
  • Мухин Лев Николаевич
  • Муякшин Сергей Иванович
  • Старцев Юрий Павлович
  • Фёдоров Игорь Германович
  • Червяков Анатолий Петрович
  • Штернов Андрей Александрович
  • Каминский Леонид Станиславович
  • Сбитнева Нина Андреевна
RU2339915C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПАРАМЕТРИЧЕСКОЙ АКУСТИЧЕСКОЙ ИЗЛУЧАЮЩЕЙ АНТЕННЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2019
  • Волощенко Вадим Юрьевич
  • Плешков Антон Юрьевич
  • Тарасов Сергей Павлович
  • Воронин Василий Алексеевич
  • Пивнев Петр Петрович
  • Волощенко Александр Петрович
RU2784885C1

Реферат патента 2015 года ГИДРОАКУСТИЧЕСКИЙ СПОСОБ КОНТРОЛЯ СКОРОСТИ ПОТОКА ЖИДКИХ СРЕД В ТРУБОПРОВОДАХ

Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее плотности, температуры и давления. Таким образом, контролируя соотношение названных величин, можно получать информацию о характеристиках среды и их динамике, сопровождающей, в частности, прокачивание жидкости в трубопроводах. Это соотношение при работе генератора на комплексную нагрузку однозначно характеризуется фазовым сдвигом между подводимым к излучателю напряжением и потребляемым им током, поэтому последний (фазовый сдвиг) и выбирают в качестве контролируемого параметра в предлагаемом способе контроля скорости потока и объемов прокачиваемых жидких сред в трубопроводах. Технический результат: существенное упрощение реализуемых по этому способу устройств со значительным снижением затрат на их производство, установку и эксплуатацию, что повлечет за собой повышение надежности последних и возможность реализации мобильного варианта устройства в целом.

Формула изобретения RU 2 550 758 C1

Гидроакустический способ контроля скорости потока жидких сред в трубопроводах, включающий создание в них гидроакустического поля и последующий контроль его параметров с помощью электроакустических преобразователей (ЭАП) и питающих их электронных устройств формирования и усиления сигналов, отличающийся тем, что используют свойство ЭАП в режиме излучения изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения при изменении характеристик среды, в частности скорости ее потока, а в качестве контролируемого параметра выбирают фазовый сдвиг между подводимым к ЭАП электрическим напряжением и потребляемым ими током.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550758C1

МНОГОФАЗНЫЙ РАСХОДОМЕР КОРИОЛИСА 2005
  • Томбс Майкл С.
  • Хенри Манус П.
  • Дута Михаела Д.
  • Лансанган Робби
  • Дуттон Роберт Е.
  • Маттар Вайд М.
RU2406977C2
СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ОСТАТОЧНОГО ГАЗА В ПОТОКЕ ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Васильев Александр Алексеевич
  • Краузе Александр Сергеевич
RU2390732C2
Акустический преобразователь 1987
  • Носов Владимир Николаевич
SU1638803A1
Акустический способ для измерения расхода потоков жидкости или газа и устройство для его осуществления 1961
  • Перельштейн М.Е.
SU148254A1
ИЗМЕРИТЕЛЬ МАССЫ ЖИДКОСТИ, ТРАНСПОРТИРУЕМОЙ ПО НЕФТЕПРОВОДУ 2007
  • Куликовский Константин Лонгинович
  • Еремин Игорь Юрьевич
RU2352905C2
Ультразвуковой расходомер 1982
  • Глушнев Владимир Дмитриевич
SU1030656A1
Акустический способ обнаружения протечек жидкости или газа в напорных трубопроводах 1986
  • Постраш Лев Михайлович
  • Галуза Анатолий Павлович
  • Вакуленко Борис Федорович
  • Шершнев Александр Васильевич
SU1545083A2
DE10062875 A1, 04.07.2002

RU 2 550 758 C1

Авторы

Щеглов Геннадий Александрович

Демидов Юрий Федорович

Попов Василий Анатольевич

Даты

2015-05-10Публикация

2014-02-07Подача