Изобретение относится к области электротехники, в частности к катодному материалу для твердооксидных топливных элементов (ТОТЭ) на основе сложных оксидов 3d-металлов.
Известно, что использование высоких рабочих температур приводит к быстрой деградации мощностных характеристик ТОТЭ, что связано, главным образом, с химическим взаимодействием между материалами компонентов ТОТЭ при высоких температурах. Понижение рабочей температуры ТОТЭ приводит к возрастанию различного рода поляризационных потерь, обусловленных протеканием тока через элемент. Основной вклад в поляризационные потери вносит катодный материал, что связано со сложным механизмом реакции восстановления кислорода на нем. Так снижение рабочей температуры ТОТЭ с 1000°C до 500°C приводит к возрастанию поляризационного сопротивления стандартного катодного материала на основе перовскита La1-xSrxMnO3 (LSM), нанесенного на твердый электролит YSZ, более чем в 2000 раз (A.J. Jacobson Chem. Mater., 22 (2010) 660). Одним из путей уменьшения поляризационных потерь на катоде при снижении рабочей температуры ТОТЭ является использование материалов, которые в отличие от LSM, обладающего высокой электронной проводимостью, являются проводниками смешанного типа, то есть обладают высокой электронной и кислород-ионной проводимостью. К этим материалам относятся сложные оксиды с перовскитоподобной структурой общего состава и , где A - один из редкоземельных катионов, A′ - щелочноземельный катион, B - катион 3d-металла (Fe, Co, Ni и Cu).
Из известных катодных материалов наиболее близким по совокупности существенных признаков и достигаемому техническому результату является катодный материал на основе купратов общей формулой Lahttp://Laj.xSrxCuO2.5-y-y (Н.-С. Yu, K.-Z. Fung, J. Power Sources 133 (2004) 162-168). Главным недостатком данного катодного материала является высокий КТР, составляющий, в зависимости от состава (x), 16.8-17.9 ppm K-1. Близкими по химическому составу являются никельсодержащие слоистые перовскитоподобные оксиды R2NiO4+y, R - редкоземельный катион (С. Ferchaud, J.-C. Grenier, Ye Zhang-Steenwinkel, M.M.A. van Tuel, F.P.F. van Berkel, J.-M. Bassat, J. Power Sources, 196 (2011) 1872; S. Nishimoto, S. Takashi, Y. Kameshima, M. Matsuda, M. Miyake. J. Ceram. Soc. Jpn., 119 (2011) 246). Недостатком Pr2NiO4+y является его низкая устойчивость в окислительной атмосфере при рабочих температурах ТОТЭ, тогда как La2NiO4+y и Nd2NiO4+y достаточно легко взаимодействуют с электролитам ТОТЭ (P. Odier, Ch. Allanion, J. M. Bassat. J. Solid State Chem., 153 (2000) 381; F. Mauvy, C. Lalanne, J.-M. Bassat, J.-C. Grenier, H. Zhao, L. Huo, Ph. Stevens. J. Electrochem. Soc, 153 (2006) A1547; A. Montenegro-Hernandez, J. Vega-Castillo, L. Mogni, A. Caneiro. Int. J. Hydrogen Energy, 36 (2011) 15704).
Задача настоящего изобретения состоит в создании катодного материала, обладающего сбалансированными свойствами. К ним относятся высокая общая и кислород-ионная проводимость, а также КТР, близкий к КТР электролита ТОТЭ.
Указанный технический результат достигается тем, что в качестве катодного материала для ТОТЭ на основе медьсодержащих перовскитоподобных слоистых оксидов взяты соединения с общей формулой Pr2-xSrxCuO4-y, где 0.0<x<1; 0.0≤y≤0.5. В зависимости от состава (x), эти оксиды имеют различные кристаллические структуры, которые можно рассматривать как результат срастания перовскитных блоков с флюоритными блоками Pr2O2 (Pr2CuO4, x=0, y=0) (Фиг. 1а) или содержащие как блоки Pr2O2 со структурой каменной соли, так и флюорита (Prhttp://Pr1.6Sro.4CuO3.9s.98, x=0.4, y=0.02) (Фиг. 1В). Они проявляют высокие величины кислород-ионной проводимости, которые сочетаются с общей высокой электропроводностью и низкими величинами коэффициентов термического расширения (КТР). Так, Pr2CuO4 (x=0.0) имеет высокую общую электропроводность, достигающую 110 См/см при 900°C и КТР 11.8 ppm K-1, меньшую, чем КТР электролита на основе допированного гадолинием диоксида церия (GDC). При этом Pr2CuO4 имеет высокую кислород-ионную проводимость, о чем свидетельствует коэффициент диффузии ионов кислорода (D*), который оказывается на несколько порядков выше, по сравнению с LSM материалами: 10-11 см2/сек при 800°C для Pr2CuO4 и 10-14-10-15 см2/сек при 800°C для LSM. Частичное замещение празеодима на стронций в купрате празеодима приводит к еще большим величинам кислород-ионной проводимости. Так для Pr1.6Sr0.4CuO3.98 (x=0.4) коэффициент диффузии кислорода составляет 8.1·10-11 см2/сек при 800°C. Материалы проявляют высокую электрокаталитическую активность в реакции восстановления кислорода при высоких температурах. Их можно совместно использовать с электролитами на основе допированного иттрием и скандием диоксида циркония (ScYSZ), а также допированного стронцием и магнием галлата лантана (LSGM) с обязательным присутствием между ScYSZ и катодным материалом дополнительного покрытия (буферного слоя) на основе допированного гадолинием диоксида церия (GDC), а в случае LSGM электролита - защитного слоя, допированного лантаном диоксида церия (LCO).
Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения неизвестна. Следовательно, можно сделать вывод о ее соответствии критерию "новизна".
Для проверки соответствия заявленного изобретения критерию "изобретательский уровень" проведен дополнительный поиск известных в настоящий момент технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. В результате установлено, что заявленное техническое решение не следует явным образом из известного уровня техники, что означает, что заявленное изобретение соответствует критерию "изобретательский уровень".
Сущность изобретения поясняется рисунками и примерами практической реализации.
На Фиг. 2 представлены вольтамперные характеристики модельного ТОТЭ с катодом Pr2CuO4 для температур 700°C, 750°C, 850°C и 900°C и электролитом на основе 10ScYSZ (материал анионного проводника ZrO2, допированный 10 мол.% Sc2O3, 1 мол.% Y2O3). Удельная мощность при 700°C достигает 120 мВт/см2.
На Фиг. 3 представлены вольтамперные характеристики модельного ТОТЭ с катодом Pr1.6Sr0.4CuO3.98 при 900°C и электролитом на основе 10ScYSZ. Удельная мощность модельного ТОТЭ достигает 380 мВт/см2.
На Фиг. 4 представлены вольтамперные характеристики модельного ТОТЭ с катодом Pr1.6Sr0.4CuO3.98 при 700, 750, 800, 850 и 900°C и электролитом на основе LSGM. Удельная мощность модельного ТОТЭ достигает 80 мВт/см2.
Пример 1.
Криохимическим методом синтеза с использованием растворов нитратов празеодима и меди получен катодный материал состава Pr2CuO4. Материал кристаллизуется в тетрагональной сингонии с параметрами элементарной ячейки a=3.9609(1) Å, c=12.2210(6) Å, имеет линейный КТР, составляющий 11.8 ppm K-1 (100-1000°C), а также электропроводность на воздухе 40 См/см (600°C) и 110 См/см (900°C). В качестве электролита в испытуемом модельном ТОТЭ используются диски 10ScYSZ, с нанесенным на него буферным слоем GDC. В качестве анода используется керметный композит, нанесенный в четыре слоя: 2 слоя состава Ni/10Sc1YSZ=40/60 вблизи электролита и 2 последующих слоя состава Ni/10SclYSZ=60/40.
Пример 2.
Синтез катодного материала Pr1.6Sr0.4CuO3.98 осуществляется при использовании в качестве исходных веществ CuO, SrCO3 и Pr6O11 керамическим методом при отжиге при 1000-1100°C в течение 20 ч. В результате получен материал, кристаллизующийся в тетрагональной сингонии (a=3.8626(1) Å, c=12.4876(6) Å), имеющий КТР 14.9 ppm K-1 (150-500°C), 17.3 ppm K-1 (500-1000°C) и электропроводность на воздухе 30 См/см (600°C), 40 См/см (900°C).
В первом варианте в качестве электролита в модельном ТОТЭ используются диски 10ScYSZ, с нанесенным на него буферным слоем GDC. В качестве анода используется керметный композит, нанесенный в четыре слоя: 2 слоя состава Ni/10Sc1YSZ=40/60 вблизи электролита и 2 последующих слоя состава Ni/10Sc1YSZ=60/40.
Во втором варианте в качестве материала электролитной мембраны выступает LSGM с буферным слоем LCO (La0.4Ce0.6O1.8), а анодом служит кермет, аналогичный по составу варианту с электролитной мембраной на основе 10ScYSZ. В этом случае между материалами анода и электролита нанесен защитный слой LCO.
название | год | авторы | номер документа |
---|---|---|---|
КАТОДНЫЕ МАТЕРИАЛЫ ДЛЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НИКЕЛЬСОДЕРЖАЩИХ СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ | 2013 |
|
RU2553460C2 |
Катодный материал для ТОТЭ на основе купрата празеодима | 2016 |
|
RU2630216C1 |
КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ТОТЭ НА ОСНОВЕ КОБАЛЬТСОДЕРЖАЩИХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ | 2007 |
|
RU2331143C1 |
ТРУБЧАТЫЙ ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ С МЕТАЛЛИЧЕСКОЙ ОПОРОЙ, ЕГО ТРУБЧАТЫЙ МЕТАЛЛИЧЕСКИЙ ПОРИСТЫЙ ОПОРНЫЙ СЛОЙ И СПОСОБЫ ИХ ИЗГОТОВЛЕНИЯ | 2007 |
|
RU2332754C1 |
ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2008 |
|
RU2399996C1 |
ВЫСОКОАКТИВНАЯ МНОГОСЛОЙНАЯ ТОНКОПЛЕНОЧНАЯ КЕРАМИЧЕСКАЯ СТРУКТУРА АКТИВНОЙ ЧАСТИ ЭЛЕМЕНТОВ ТВЕРДООКСИДНЫХ УСТРОЙСТВ | 2016 |
|
RU2662227C2 |
ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2005 |
|
RU2356132C2 |
Единичная трубчатая ячейка с несущим протонным электролитом для прямого преобразования углеводородного топлива | 2020 |
|
RU2742140C1 |
Трехслойная твердоэлектролитная мембрана среднетемпературного ТОТЭ | 2023 |
|
RU2812650C1 |
АКТИВНЫЙ ДВУХСЛОЙНЫЙ ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ | 2006 |
|
RU2322730C2 |
Изобретение относится к области электротехники, в частности к катодному материалу для твердооксидных топливных элементов (ТОТЭ) на основе сложных оксидов 3d-металлов. Катодный материал выполнен на основе перовскитоподобных слоистых оксидов с общей формулой Pr2-xSrxCuO4-y, где 0.0<x<1; 0.0≤y≤0.5. Техническим результатом предложенного решения является создание катодного материала, обладающего одновременно высокой кислород-ионной проводимостью и имеющего значение коэффициента термического расширения (КТР), близкое с КТР электролита ТОТЭ. Катодный материал может успешно использоваться с электролитами ТОТЭ на основе допированного иттрием и скандием диоксида циркония (ScYSZ), а также допированного стронцием и магнием галлата лантана (LSGM) с обязательным присутствием между ScYSZ и катодным материалом дополнительного покрытия (буферного слоя) на основе допированного гадолинием диоксида церия (GDC), а в случае LSGM электролита - защитного слоя, допированного лантаном диоксида церия (LCO). 4 ил., 2 пр.
Катодный материал для твердооксидного топливного элемента (ТОТЭ) на основе медьсодержащих перовскитоподобных слоистых оксидов, отличающийся тем, что в качестве перовскитоподобного оксида взято соединение с общей формулой Pr2-xSrxCuO4-y, где 0.0<x<1; 0.0≤y≤0.5.
EP 200970278 A1, 30.04.2010 | |||
ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2008 |
|
RU2399996C1 |
CN 102097626 A, 15.06.2011 | |||
TW 201123589 A, 01.07.2011 | |||
US 2006216575 A1, 28.09.2006 | |||
JP 2010282933 A, 16.12.2010 | |||
KR 20020053786 A, 05.07.2002 |
Авторы
Даты
2015-05-20—Публикация
2014-05-16—Подача