ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ Российский патент 2015 года по МПК G01R25/00 

Описание патента на изобретение RU2551837C2

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения приращений фазы или разности фаз пары сигналов и их изменения во времени.

Прецизионное измерение разности фаз пары сигналов необходимо при создании лазерных и радиочастотных измерителей вибраций и перемещений, где малые изменения фазы несут информацию об исследуемых процессах. Сигнал на входе фазометра - гармонический. Разность фаз Δφ(t) изменяется во времени таким образом, что содержит большую низкочастотную компоненту φНЧ(t) и малую высокочастотную компоненту δφ(t). В некоторых задачах требуется измерение только малой высокочастотной компоненты δφ(t) в условиях большой низкочастотной компоненты φНЧ(t). В других задачах требуется измерение только малой низкочастотной компоненты φНЧ(t) на фоне большой высокочастотной компоненты δφ(t). Иногда требуется измерение всех компонент разности фаз. В некоторых случаях достаточно измерять высокочастотные приращения одной фазы.

Известны высокочастотные широкополосные фазометры различных конструкций, измеряющие разность фаз двух гармонических сигналов.

Например, известен фазометр с гетеродинным преобразованием частоты, включающий: два аналого-цифровых преобразователя (АЦП); таймер, средство сбора и обработки данных и два канала обработки сигналов, причем каждый канал содержит четыре регистра, два вычитателя, два сумматора с коэффициентами [В.А. Жмудь, Д.О. Терешкин, А.В. Ляпидевский, А.В. Захаров, В.И. Гололобов. Повышение быстродействия цифрового прецизионного фазометра. Сборник научных трудов Новосибирского государственного технического университета. 2011 г. №4 (66). С.27].

Этот фазометр работает следующим образом.

Входные сигналы U1 и U2 высокой частоты ω1 имеют вид гармонических функций, амплитуда и фаза которых неизвестны, причем фаза должна быть измерена. Эти сигналы поступают на два идентичных АЦП, частота измерений которых задается частотой сигнала от подключенного к их тактовым входам таймера. Таймер формирует сигналы с известной частотой ω0. Результат работы АЦП в виде двоичного кода, равного цифровому значению входного сигнала в момент взятия отсчета, движется последовательно от первого до четвертого регистра каждого канала. Таким образом, в регистрах содержатся отсчеты за последние четыре момента времени. Первый вычитатель формирует разность первого и третьего отсчетов, второй вычитатель формирует разность второго и четвертого отсчетов. Сумматоры с коэффициентами формируют из выходных кодов вычитателей суммы с соответствующими коэффициентами, равными трем и пяти. Показано, что это позволяет вычислить когерентную и квадратурную компоненты входного сигнала, из которых на основе известных уравнений вычисляется фаза входного сигнала, а по разностям результатов вычислений в двух каналах может быть вычислена разность фаз двух входных сигналов. Все вычисления осуществляет средство сбора и обработки сигналов.

Недостаток этого фазометра состоит в излишней сложности, так как каждый сумматор с коэффициентами содержит сдвиговый регистр, в котором хранится предыдущее значение полученного кода; реализация коэффициентов 3 и 5 также излишне сложна, поскольку это требует сложения кода с этим же кодом, сдвинутым на один или два регистра, что соответствует умножению на 2 или на 4; первое вычисленное значение осуществляется только после восьми тактов работы устройства, то есть после получения восьми отсчетов входных сигналов.

Наиболее близким к заявляемому устройству является фазометр с гетеродинным преобразованием частоты, принятый за прототип, включающий: два аналого-цифровых преобразователя (АЦП); времязадающее средство, средство сбора и обработки данных и два канала обработки сигналов, причем каждый канал обработки сигналов содержит восемь регистров и два алгебраических сумматора. При этом входами фазометра являются входы аналого-цифровых преобразователей, каждый аналого-цифровой преобразователь подключен через канал обработки сигналов к входам средства сбора и обработки данных, в каждом канале обработки сигналов все восемь регистров включены последовательно, вход первого из этих регистров является входом канала обработки сигналов, выходы алгебраических сумматоров являются выходами канала обработки сигналов, выходы первого, третьего, пятого и седьмого регистров подключены к входам первого алгебраического сумматора с множительными коэффициентами плюс три, минус три, плюс пять и минус пять соответственно, выходы второго, четвертого, шестого и восьмого регистров подключены к входам второго алгебраического сумматора с множительными коэффициентами плюс пять, минус пять, плюс три и минус три соответственно, выходы времязадающего средства соединены с тактовыми входами всех остальных элементов [В.А. Жмудь, Д.О. Терешкин, А.В. Ляпидевский, А.В. Захаров, В.И. Гололобов. Повышение быстродействия цифрового прецизионного фазометра. Сборник научных трудов Новосибирского государственного технического университета. 2011 г. №4 (66). С.33].

Этот фазометр с гетеродинным преобразованием частоты работает следующим образом.

Входные сигналы U1 и U2 высокой частоты ω1 имеют вид:

и

где А1 и А2 - амплитуда, которая меняется существенно медленней, чем U1(t) и U2(f), ω1 - одинаковая несущая частота сигналов, φ1 и φ2 - фазы этих сигналов. Требуется измерить разность фаз Δφ=φ21.

Для этого входные сигналы U1 и U2 поступают на два идентичных аналого-цифровых преобразователя, АЦП1 и АЦП2. Эти АЦП в моменты времени tn, задаваемые времязадающим устройством, формируют цифровые отсчеты значений входных сигналов с частотой следования ω0. Время преобразования АЦП существенно меньше, чем период поступающих на них сигналов. Частота взятия отчетов ω0 с некоторым приближением превышает в М раз частоту сигналов (1) и (2), т.е. ω0≈Мω1, где М=4.

В устройстве использовано два идентичных канала обработки сигналов, общими для этих каналов обработки сигналов в устройстве являются только времязадающее средство и средство обработки данных, остальные элементы дублируются по количеству каналов.

Рассмотрим работу одного канала обработки сигналов. Введем двойную индексацию таких отчетов, а именно: u11, u12, u13, u14, u21, u22, u23, u24, u31 и так далее.

Такая индексация делит получаемую последовательность отсчетов на 4 серии отсчетов с номерами (1, 5, 9,…); (2, 6, 10,…), (3, 7, 11,…) и (4, 8, 12,…). Получаемые отсчеты сигнала (1) могут трактоваться как отсчеты разностной частоты между частотой этого сигнала (1) и частотой преобразования ω0, задаваемой времязадающим устройством. Между каждой серией отчетов имеет место сдвиг фаз на величину Δϕ=2π/М=0,5π.

Следует учесть, что сдвиг фаз на π тождественен инверсии сигнала, а сдвиг фаз на 2π тождественен отсутствию сдвига. Сдвиг фаз на π/2 преобразует синус в косинус, а косинус - в минус синус.

Погрешность АЦП q(t) добавляется ко всем отсчетам, и для вычисления истинного значения отсчета сигнала (1) из полученного значения требуется вычесть этот сдвиг q. Поэтому справедливы равенства:

u111·cos[φ1(t11)]+q(t11)

u12=-A1·sin[φ1(t12)]+q(t12)

u13=-A1·cos[φ1(t13)]+q(t13)

u14=-А1·sin[φ1(t14)]+q(t14)

u15=A1·cos[φ1(t15)]+q(t15) и так далее.

Таким образом, получается последовательность когерентных и квадратурных отсчетов сигнала разностной частоты с чередующимся знаком. Эти отсчеты содержат информацию об изменяющейся фазе, а также погрешность АЦП q(t).

Если вычесть попарно значения этих отсчетов, можем получить оценки когерентной и квадратурной компонент сигнала разностной частоты, которые будут относиться к разным моментам времени:

Систематическая компонента погрешности АЦП вычитаются, то есть последние два члена в этих выражениях компенсируют друг друга, если они слабо зависят от времени.

Поскольку φ1 изменяется достаточно медленно в сравнении с темпом взятия отсчетов сигнала, сложение косинусов этой фазы, взятое в разные моменты времени t11 и t13, приблизительно дает удвоенный косинус, взятый в момент t12, находящийся посредине этих моментов:

Для приведения этих отсчетов к одинаковым моментам времени используется метод трапеций, из которого следуют соотношения:

Здесь X1 и Y1 - отсчеты когерентной и квадратурной компонент сигнала, вычисленные для момента времени t21, В2 и D2 - величины, вычисленные по соотношениям (5) и (6) для следующей четверки отсчетов.

Далее по известным соотношениям из отсчетов когерентной и квадратурной компонент сигнала вычисляется значение текущей фазы сигнала, причем в этих соотношениях влияние амплитуды на результат исключается вследствие свойств этих соотношений для пары сигналов, содержащих как когерентную, так и квадратурную компоненты.

Структура описываемого фазометра предназначена для реализации вычислений по соотношениям (3)-(6). Получаемый далее аналитический сигнал, представляющий собой последовательность Х1 и Y1 отсчетов когерентной и квадратурной компонент сигнала разностной частоты, используется средством сбора и обработки данных, например, компьютером. Это средство вычисляет значения фазы по известным соотношениям для фазы аналитического сигнала.

Для вычисления соотношений (3)-(6) восемь регистров каждого канала обработки сигналов включены последовательно, поэтому в первый регистр поступает текущее значение отсчета соответствующего АЦП, на следующем такте это значение перемещается во второй регистр, а в первый регистр поступает новое значение и так далее. После восьми тактов в восьми регистрах каждого канала обработки сигналов оказываются запомненными последние восемь отсчетов соответствующего АЦП.

Каждый алгебраический сумматор содержит четыре входа с коэффициентами в полном соответствии с соотношениями (7) и (8), а также с учетом (3) и (4). Таким образом, каждый алгебраический сумматор реализует вычисления по следующим соотношениям:

Недостаток этого фазометра состоит в излишней сложности, так как каждый канал обработки сигнала содержит двенадцать регистров, каждый алгебраический сумматор имеет четыре входа, на каждом из входов имеется устройство умножения на коэффициент 3 или 5 из соотношений (9) и (10). Умножение на коэффициенты, не являющиеся степенями числа 2, также излишне сложно. В частности, для умножения кода на 3 следует к этому коду прибавить этот же самый код со сдвигом на один разряд в сторону старших разрядов. Для умножения на 5 следует к исходному коду прибавить этот же код, сдвинутый на два разряда в сторону старших разрядов. Таким образом, каждый умножитель на коэффициент 3 или 5 содержит в своей структуре устройство сдвига и дополнительный сумматор.

Задачей, на решение которой направлено изобретение, является упрощение фазометра с гетеродинным преобразованием частоты.

Поставленная задача решается тем, что в фазометре с гетеродинным преобразованием частоты, содержащем средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных, при этом в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода. При этом каналов обработки может быть более одного.

При этом удвоитель кода может быть выполнен в виде шины со сдвигом разрядов на единицу в сторону старшего разряда.

Схема предлагаемого фазометра с гетеродинным преобразованием частоты на примере фазометра с двумя каналами показана на Фиг.1.

На Фиг.2 показаны эпюры сигналов в предлагаемом фазометре с гетеродинным преобразованием частоты.

Предлагаемый фазометр с гетеродинным преобразованием частоты (Фиг.1) содержит (в двухканальном исполнении):

1 - аналого-цифровой преобразователь (АЦП),

2 - времязадающее средство,

3-6 - регистры,

7 - сумматор,

8-9 - вычитатели,

10-11 - удвоители кода,

12 - средство сбора и обработки данных,

13 - первый канал обработки сигналов,

14 - второй канал обработки сигналов.

Аналого-цифровой преобразователь и четыре регистра последовательно соединены, вход аналого-цифрового преобразователя является входом фазометра и канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, входы средства сбора и обработки данных подключены к выходу второго вычитателя, являющемуся первым выходом канала обработки сигналов, и через второй удвоитель кода к выходу первого вычитателя, являющемуся вторым выходом канала обработки сигналов.

Аналого-цифровой преобразователь может быть выполнен на стандартной микросхеме с таким названием и назначением, как и в прототипе. Времязадающим средством может быть любой достаточно стабильный генератор или таймер, как и в прототипе, или проще, так как в нем достаточно иметь один выход, который задает тактовые импульсы на все элементы, с которыми он соединен.

Средством сбора и обработки данных может быть персональный компьютер.

Остальные элементы этого фазометра с гетеродинным преобразованием частоты могут быть выполнены так же, как в прототипе, на специализированном контроллере.

В предложенном фазометре с гетеродинным преобразованием частоты соблюдение соответствия подключения входов вычитателей 8 и 9 не критично, эти входы могут быть использованы произвольно, поскольку их взаимная замена повлияет лишь на знак их выходных сигналов, поступающих на средство сбора и обработки данных 12, в котором знак сигналов может быть учтен программно.

Все устройство также может быть полностью реализовано на сигнальном процессоре, например на процессоре фирмы Altera [NCO MegaCore Function. User Guide. http://www.altera.com/literature/ug/ug_nco.pdf], использующим АЦП типа ADC6645, имеющим 14 разрядов и работающим на тактовой частоте 100 МГц.

Предлагаемый фазометр с гетеродинным преобразованием частоты (Фиг.1) работает следующим образом.

Рассмотрим работу фазометра с гетеродинным преобразованием частоты в одноканальном исполнении, поскольку при наличии нескольких каналов обработки сигналов все они идентичны и работают одинаково.

Входной сигнал описывается соотношением (1). Аналого-цифровой преобразователь 1 работает так же, как в прототипе, выдавая в ответ на каждый такт времязадающего устройства очередной отсчет значения входного сигнала. Отсчеты u11, u12, u13, u14, u21, u22, u23, u24, u31 и так далее последовательно возникают на выходе аналого-цифрового преобразователя 1.

Четыре регистра 3, 4, 5 и 6 работают так же, как в прототипе, то есть с каждым тактовым импульсом от времязадающего средства 2 их входные коды запоминаются и появляются на их выходах. В результате после первых четырех тактов преобразования в этих регистрах 3-6 хранятся четыре последних отсчета входных сигналов, получаемых на выходе аналого-цифрового преобразователя 1. В момент появления на выходе аналого-цифрового преобразователя 1 пятого отсчета все эти пять отсчетов одновременно поступают на входы сумматора 7, вычитателя 8 и через удвоитель кода 10 - на отрицательный вход вычитателя 9. На положительный вход этого вычитателя поступает код с выхода сумматора 7. Далее полученные коды с выхода обоих вычитателей поступают на средство сбора и обработки данных 12, причем с выхода вычитателя 8 код поступает через удвоитель кода 11.

В предлагаемом устройстве для вычисления значений когерентной и квадратурной компонент сигнала разностной частоты используются соотношения, отличающиеся от соотношений (7) и (8).

С учетом сказанного выше справедливы следующие соотношения:

Таким образом, пять отсчетов входного сигнала u11, u12, u13, u14, u21 достаточно, чтобы получить оценки когерентной и квадратурной компонент входного сигнала, привязанных к одному и тому же времени - к моменту поступления серединного отсчета, то есть ко времени t13.

Сигналы, показанные на Фиг.2, поясняют соотношения (11)-(14).

Для вычисления когерентной компоненты используется сумма двух крайних отсчетов интервала, из которой вычтен удвоенный отсчет в середине интервала. При этом систематические компоненты погрешности аналого-цифрового преобразователя 1 компенсируются, что нетрудно видеть, если в (11) подставить q(t11)=q(t13)=q(t21).

Для вычисления квадратурной компоненты используется удвоенная разность второго и четвертого отсчетов. При этом систематические компоненты погрешности аналого-цифрового преобразователя 1 также компенсируются, что нетрудно видеть, если в (12) подставить q(t12)=q(t14).

Каждый канал обработки сигналов вычисляет когерентную и квадратурную компоненты сигнала разностной частоты в соответствии с соотношениями (11) и (12). Для этого требуется лишь 4 регистра сдвига 3-6, поскольку на их выходах будут получаться четыре последних отсчета, не считая самого последнего, который может быть взят непосредственно с выхода аналого-цифрового преобразователя 1.

Далее последовательности {Ei, Fi} используются средством сбора и обработки данных 12 как когерентная и квадратурная компоненты аналитического сигнала, то есть проекции вектора на оси X и Y. По этим проекциям средство сбора и обработки данных 12 вычисляет фазу сигнала:

Здесь atan2(X,Y) - стандартная функция, равная arctg(Y/X) для | Y | < | X | и arcctg(X/Y) для | Y | > | X | . Эта функция определена на всем множестве {Ei, Fi}. Это соотношение позволяет устранить влияние амплитудной модуляции на результат вычисления фазы.

Таким образом, задача вычисления фазы решена, результат находится в средстве сбора и обработки данных 12.

Предлагаемый фазометр с гетеродинным преобразованием частоты проще прототипа, поскольку на один канал обработки сигналов требуется четыре регистра 3-6, а не восемь, как в прототипе. Также упрощение состоит в том, что вместо двух алгебраических сумматоров, каждый из которых в прототипе имеет четыре входа с коэффициентами плюс три, синус три, плюс пять и минус пять, отличающимися от целой степени двойки, в предлагаемом фазометре с гетеродинным преобразованием частоты применяется два простых вычитателя 8 и 9 с двумя входами и один сумматор 7. Оба вычитателя 8 и 9 и сумматор 7 имеют лишь по два входа. При этом удвоители кода 10 и 11 представляют собой простой сдвиг шины сигналов на один разряд в сторону старших разрядов. Сумматор 7, осуществляющий сложения двух двоичных кодов, и вычитатели 8 и 9, осуществляющие вычитание двух двоичных кодов, могут быть реализованы на простых логических элементах без памяти. Такой сумматор 7 и вычитатели 8 и 9 не требуют синхронизации от времязадающего средства 2, поскольку выходной сигнал на них появляется в момент появления входного сигнала и изменяется в момент изменения входного сигнала с незначительной задержкой, определяемой временем срабатывания простых логических элементов внутри них, не содержащих регистров (или триггеров). Изменение выходных кодов на них является простым следствием изменения входных кодов.

Таким образом, упрощение фазометра достигается за счет уменьшения количества регистров, требуемых в одном канале обработки сигналов, вместо восьми - четыре, за счет исключения алгебраических сумматоров с четырьмя входами, вместо которых достаточно использовать два вычитателя на два входа и сумматор на два входа. Также упрощение достигается за счет отсутствия необходимости умножения кода на 3 и на 5, вместо этого коды умножаются только на 2, что достигается простым сдвигом двоичного кода на один разряд в сторону старшего разряда. Также упрощенный сумматор 7 и вычитатели 8 и 9 могут работать без использования тактового сигнала, что также является упрощением. Эти сумматоры не содержат регистров внутри себя, что отличает их от прототипа и от ближайшего аналога. Также упрощаются умножители на коэффициенты, которые в прототипе содержались в алгебраических сумматорах. В предлагаемом фазометре с гетеродинным преобразователем не требуется умножения числа на код, отличающийся от 2. Умножение на 2 достигается простым сдвигом двоичного кода на один разряд влево, поэтому умножители на 2 чрезвычайно просты, это просто шина со сдвигом в сторону старших разрядов на один разряд.

Предлагаемый фазометр также может содержать более одного канала обработки сигналов.

Таким образом, предлагаемый фазометр с гетеродинным преобразованием частоты решает задачу упрощения.

Похожие патенты RU2551837C2

название год авторы номер документа
ФАЗОМЕТР 2015
  • Жмудь Вадим Аркадьевич
  • Ляпидевский Александр Валерьевич
RU2582625C1
ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ 2012
  • Жмудь Вадим Аркадьевич
  • Терешкин Денис Олегович
  • Ляпидевский Александр Валерьевич
  • Захаров Антон Викторович
  • Гололобов Владимир Иванович
RU2497136C1
ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ 2010
  • Жмудь Вадим Аркадьевич
  • Воевода Александр Александрович
  • Семибаламут Владимир Михайлович
  • Гончаренко Анатолий Михайлович
  • Бугров Семен Владимирович
RU2470312C2
ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ 2002
  • Гончаренко А.М.
  • Васильев В.А.
  • Жмудь В.А.
RU2225012C2
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ СДВИГА ФАЗ ГАРМОНИЧЕСКИХ СИГНАЛОВ 2020
  • Чернояров Олег Вячеславович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
  • Пантенков Дмитрий Геннадьевич
RU2751020C1
Цифровой измеритель отношения сигнал/шум сигналов с фазовой манипуляцией 2023
  • Чернояров Олег Вячеславович
  • Сальникова Александра Валериевна
  • Черноярова Елена Валериевна
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2799234C1
ЦИФРОВОЕ КВАДРАТУРНОЕ УСТРОЙСТВО ФАЗОВОЙ СИНХРОНИЗАЦИИ И ДЕМОДУЛЯЦИИ 2015
  • Литвиненко Владимир Петрович
  • Глушков Алексей Николаевич
RU2591032C1
ЦИФРОВОЙ ДЕМОДУЛЯТОР СИГНАЛОВ С ОТНОСИТЕЛЬНОЙ ФАЗОВОЙ МАНИПУЛЯЦИЕЙ 2011
  • Литвиненко Владимир Петрович
  • Глушков Алексей Николаевич
RU2505922C2
Цифровой измеритель отношения сигнал/шум сигналов с фазовой манипуляцией 2024
  • Чернояров Олег Вячеславович
  • Черноярова Елена Валериевна
  • Сальникова Александра Валериевна
  • Глушков Алексей Николаевич
  • Пантенков Дмитрий Геннадьевич
  • Холодова Мария Анатольевна
RU2827313C1
Цифровой обнаружитель фазоманипулированных сигналов 2015
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2634382C2

Иллюстрации к изобретению RU 2 551 837 C2

Реферат патента 2015 года ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения приращений фазы или разности фаз пары сигналов и их изменения во времени. Фазометр содержит средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, при этом вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных; при этом в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 551 837 C2

1. Фазометр с гетеродинным преобразованием частоты, содержащий средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, при этом вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных, отличающийся тем, что в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода.

2. Фазометр с гетеродинным преобразованием частоты по п.1, отличающийся тем, что каждый удвоитель кода выполнен в виде шины со сдвигом разрядов на единицу в сторону старшего разряда.

Документы, цитированные в отчете о поиске Патент 2015 года RU2551837C2

ФАЗОМЕТР С ГЕТЕРОДИННЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ 2002
  • Гончаренко А.М.
  • Васильев В.А.
  • Жмудь В.А.
RU2225012C2
US 4901244 A1, 13.02.1990
СПОСОБ ИЗМЕРЕНИЯ ФАЗОВОГО СДВИГА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Гребенников А.В.
  • Чмых М.К.
  • Авсиевич В.Н.
  • Новиков В.Б.
RU2099721C1
Двухканальный гетеродинный фазометр 1959
  • Власов В.Л.
  • Потапов В.А.
SU127710A1
DE 4124005 A1, 21.01.1993
Гетеродинный фазометр 1980
  • Савв Ким Рашидович
  • Яцевич Владимир Петрович
SU1018038A1

RU 2 551 837 C2

Авторы

Жмудь Вадим Аркадьевич

Ляпидевский Александр Валерьевич

Даты

2015-05-27Публикация

2013-10-22Подача