Область техники
Изобретение относится к контрольно-измерительной технике, в частности для измерения деформаций (напряжений) в различных конструкциях посредством поляризационно-оптических преобразователей, и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.
Уровень техники
Эффект фотоупругости (пьезооптический эффект) используется для прецизионного измерения деформаций (или напряжений). Анизотропные механические напряжения в практически любом материале приводят к анизотропному изменению коэффициента преломления (двулучепреломлению). Это приводит к изменению угла поляризации света при прохождении сквозь такой материал. Существуют устройства, называемые пьезооптическими преобразователями, которые преобразуют величину изменения угла поляризации в величину электрического сигнала, пропорциональную величине деформации или напряжения. Известно, что датчики деформаций, на основе пьезооптических преобразователей, обладают наибольшей чувствительностью по сравнению с другими, например с датчиками на основе тензорезистивных преобразователей (Слезингер И.И. Пьезооптические измерительные преобразователи. Измерительная техника, 1985, №11, с.45-48) [1]).
Пьезооптический преобразователь состоит из оптически связанных светодиода, поляризатора, фазовой пластинки, фотоупругого элемента, анализатора и фотоприемника. Форма фотоупругого элемента может быть различной: параллелепипед, цилиндр, усеченный конус.
Наиболее близким, по технической сущности, к предлагаемому фотоупругому элементу является фотоупругий элемент, предложенный в патентах РФ №2422786 от 23.04.2010 и №2454642 от 29.03.2011 [2, 3]. В указанных патентах фотоупругий элемент выполнен в виде, либо цилиндра, либо усеченного конуса. Фотоупругий элемент изначально зажат в двух взаимно перпендикулярных направлениях, что обеспечивает его работу, как на сжатие, так и на растяжение.
Недостатком данных конструкций фотоупругого элемента (ФЭ) является то, что, как показывают расчеты и эксперименты, напряжения в ФЭ сконцентрированы вблизи областей его касания с нагрузочным элементом пьезооптического датчика деформации, в котором закреплен ФЭ, и спадают к центру ФЭ, в то время как световой пучок датчика проходит именно через центральную часть ФЭ, т.е. в области минимальных напряжений. Это приводит к снижению чувствительности датчика.
В то же время, поскольку нагрузочный элемент, в котором закрепляется ФЭ, значительно превышает габариты ФЭ, это не позволяет уменьшить габаритные размеры пьезооптического датчика деформации и сделать его миниатюрным.
Раскрытие изобретения
Задача изобретения заключается в создании такой формы фотоупругого элемента, которая обеспечит увеличение напряжений в центральной (рабочей) части фотоупругого элемента.
Технический результат - повышение чувствительности ФЭ к нагрузкам.
Кроме того, использование предлагаемого ФЭ в пьезооптических датчиках деформации позволит повысить чувствительность и точность измерений последних и уменьшить их габариты.
Поставленная задача решена за счет того, что известный фотоупругий элемент согласно изобретению имеет в плане крестообразную форму, фронтальные поверхности которого, параллельные направлению прилагаемых усилий, являются оптически плоскими, а боковые поверхности фотоупругого элемента имеют постоянный и/или переменный радиус кривизны.
Описание фотоупругого элемента и обоснование новых признаков
Описание заявляемого фотоупругого элемента поясняется Фиг.1, 2, 3.
На Фиг.1 показан пример фотоупругого элемента (ФЭ), который в плане имеет крестообразную форму, боковые поверхности которого имеют постоянный радиус кривизны. Для выяснения эффективности такой формы ФЭ было проведено численное моделирование упругих напряжений, возникающих в объеме ФЭ при рабочих усилиях. Изначально ФЭ был упруго сжат в направлении осей X и Y усилиями Px=Py=87.9 МПа. Рабочее усилие прилагалось вдоль оси Y и равнялось ΔPy=19.5 МПа. При моделировании варьировалась величина «врезки» d (см. Фиг.1) от 0 мм, для круглого элемента диаметром 12 мм, до 3.5 мм.
На Фиг.2(а, б, в, г, д) показаны результаты моделирования для разных форм ФЭ, при одинаковом рабочем усилии. На фигурах 2а-2д показаны изолинии величины разности напряжений Δσ=σx-σy, величине которой пропорционален выходной электрический сигнал пьезооптического преобразователя. Численные значения величины Δσ указаны на фигуре цифрами в МПа. Величина «врезки» на Фиг.2а, 2б, 2в, 2г, 2д равна 0 мм, 1.13 мм, 1.84 мм, 2.55 мм, 3.26 мм, соответственно.
На Фиг.3 показана зависимость величины Δσ от глубины «врезки» d. Из фигур видно, что по мере увеличения «врезки» напряжения (при одинаковом рабочем усилии) смещаются от периферии ФЭ к его центру, то есть в ту область, где проходит световой луч пьезооптического преобразователя. Например, для формы ФЭ, показанного на Фиг.2г (глубина «врезки» составляет 2.55 мм, при этом радиус «врезки» равен 5 мм, диаметр всего ФЭ 12 мм) увеличение Δσ по сравнению с круглым ФЭ составляет 32%. Таким образом, подтверждается увеличение напряжений, а следовательно, и выходного сигнала пьезооптического преобразователя с крестообразным ФЭ. Полученные результаты моделирования хорошо согласуются с экспериментальными данными.
Предельная глубина и форма «врезки» определяется прочностными характеристиками материала фотоупругого элемента.
При размещении крестообразного ФЭ в пьезооптическом преобразователе, узлы крепления элементов последнего могут быть размещены в промежутках между боковыми поверхностями ФЭ, не выходя за габариты внешнего диаметра ФЭ (заштрихованные области на Фиг.1). Таким образом, поперечный размер преобразователя не будет превышать диаметр ФЭ.
В качестве материала фотоупругого элемента может быть использован, например, плавленый кварц, обладающий высоким порогом разрушения на сжатие, что обеспечивает высокий динамический диапазон измерений деформаций и надежность преобразователя. Кроме того, технология обработки плавленого кварца хорошо развита, что удешевляет конструкцию тензометрического преобразователя.
Описание работы устройства
Фотоупругий элемент работает следующим образом.
При приложении измеряемой нагрузки к фотоупругому элементу вдоль одной из его осей возникают дополнительные напряжения Δσx и Δσy в центральной части ФЭ. В результате возникает дополнительная разность фаз ±Δ между взаимно перпендикулярными компонентами поляризации луча, прошедшего сквозь фотоупругий элемент. Разность фаз обусловлена двулучепреломлением нагруженного ФЭ. Изменение фазы поляризации приводит к изменению электрического сигнала на выходе фотоприемника. В случае пьезооптического преобразователя, он регистрируется и обрабатывается блоком обработки сигнала. Величина выходного сигнала преобразователя пропорциональна величине Δσ=Δσx-Δσy, которая пропорциональна величине измеряемого напряжения (деформации).
название | год | авторы | номер документа |
---|---|---|---|
ТЕНЗОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2014 |
|
RU2564691C2 |
ТЕНЗОМЕТРИЧЕСКИЙ ДАТЧИК (ВАРИАНТЫ) | 2011 |
|
RU2454642C1 |
ТЕНЗОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2010 |
|
RU2422786C1 |
ТЕНЗОМЕТРИЧЕСКИЙ ДАТЧИК | 2013 |
|
RU2530467C1 |
ТЕНЗОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2013 |
|
RU2530466C1 |
УСТРОЙСТВО ОБРАБОТКИ СИГНАЛА ПЬЕЗООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ | 2014 |
|
RU2565856C1 |
ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО | 1996 |
|
RU2110046C1 |
Пьезооптический акселерометр | 1988 |
|
SU1589216A1 |
Волоконно-оптический пьезооптический измерительный преобразователь | 1983 |
|
SU1182288A1 |
СПОСОБ КОНТРОЛЯ ПАРАМЕТРОВ ДВИЖЕНИЯ ПОДЪЕМНОГО УСТРОЙСТВА | 2015 |
|
RU2618862C2 |
Изобретение относится к контрольно-измерительной технике, в частности для измерения деформаций (напряжений) в различных конструкциях посредством поляризационно-оптических преобразователей, и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре. Согласно изобретению фотоупругий элемент имеет в плане крестообразную форму, фронтальные поверхности которого, параллельные направлению прилагаемых усилий, являются оптически плоскими, а боковые поверхности фотоупругого элемента имеют постоянный и/или переменный радиус кривизны. Технический результат - увеличение напряжений в центральной (рабочей) части фотоупругого элемента и, как следствие, повышение чувствительности пьезоэлектрических датчиков, использующих данные фотоупругие элементы. 3 ил.
Фотоупругий элемент, отличающийся тем, что имеет в плане крестообразную форму, фронтальные поверхности которого, параллельные направлению прилагаемых усилий, являются оптически плоскими, а боковые поверхности фотоупругого элемента имеют постоянный и/или переменный радиус кривизны.
Погружной перфоратор для бурения скважин | 1958 |
|
SU115474A1 |
Конвертер для продувки цветных металлов | 1957 |
|
SU111646A1 |
Фотоупругий измерительный преобразователь | 1989 |
|
SU1649315A1 |
US 20130036830 A1, 14.02.2013 |
Авторы
Даты
2015-06-10—Публикация
2013-11-29—Подача