Изобретение относится к области инкапсуляции.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения инкапсулированной нативной крови, отличающимся тем, что в качестве оболочки микрокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - нативная кровь при получении инкапсулируемых частиц методом осаждения нерастворителем с применением гексана в качестве осадителя, процесс получения микрокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение микрокапсул методом осаждения нерастворителем с использованием гексана в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки частиц и нативной крови - в качестве ядра.
Результатом предлагаемого метода являются получение микрокапсул нативной крови в оболочке - натрий карбоксиметилцеллюлозе.
На фиг.1 - самоорганизация нанокапсулированной нативной крови в натрий карбоксиметилцеллюлозе в соотношении оболочка: ядро 3:1 в концентрации 0,25%: а) с увеличением в 505 раз, б) с увеличением 620 раз, в) с увеличением 930 раз, г) с увеличением 1200 раз, д) с увеличением 1770 раз, е) с увеличением 2830 раз.
На фиг.2 - самоорганизация нанокапсулированной нативной крови в натрий карбоксиметилцеллюлозе в соотношении оболочка: ядро 3:1 в концентрации 0,125%: а) с увеличением в 1770 раз, б) с увеличением 2830 раз.
ПРИМЕР 1. Получение микрокапсул нативной крови в натрий карбоксиметилцеллюлозе
Суспензию 100 мг нативной крови в 1 мл диэтилового эфира диспергируют в раствор натрий карбоксиметилцеллюлозы в бензоле, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием при перемешивании 1300 об/сек. Далее приливают 5 мл гексана и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,396 г порошка микрокапсул. Выход составил 99%.
ПРИМЕР 2. Исследование самоорганизации микрокапсул из растворов
Из порошка микрокапсул, полученных по методике, описанной в примере 1, были приготовлены водные растворы концентрациями 1%, 0,5%, 0,25%, 0,125% и т.д. путем разбавления раствора в два раза. Капля каждого из приготовленных растворов помещалась на предметное стекло до полного высушивания, и по высушенной поверхности проводилась конфокальная сканирующая микроскопия.
Таким образом, получены микрокапсулы нативной крови с высоким выходом без специального оборудования в течение 10 мин. Образование микрокапсул происходит спонтанно за счет нековалентных взаимодествий, и это говорит о том, что для них характерна самосборка. Представленные на фиг.1, 2 структуры являются упорядоченными, значит, они обладают самоорганизацией. Следовательно, инкапсулированная нативная кровь обладает супрамолекулярными свойствами.
Изобретение относится к фармацевтической промышленности, а именно к способу получения инкапсулированной нативной крови. Способ получения инкапсулированной нативной крови, характеризующийся тем, что суспензию нативной крови в диэтиловом эфире диспергируют в смесь натрия карбоксиметилцеллюлозы в бензоле, в присутствии Е472, перемешивают, далее к полученной смеси приливают гексан и воду, полученную суспензию отфильтровывают и сушат при определенных условиях. Вышеописанный способ позволяет упростить и ускорить процесс получения инкапсулированной нативной крови. 2 ил., 2 пр.
Способ получения инкапсулированной нативной крови, характеризующийся тем, что суспензию 100 мг нативной крови в 1 мл диэтилового эфира диспергируют в 300 мг натрий карбоксиметилцеллюлозы в бензоле, в присутствии 0,01 г Е472, перемешивают при 1300 об/сек, далее к полученной смеси приливают 5 мл гексана и 1 мл воды, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Солодовник В.Д | |||
Микрокапсулирование | |||
" М.: Химия, 1980 | |||
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
Ж.-М | |||
Лен, Супрамолекулярная химия: Концепции и перспективы, - Новосибирск: Наука.Сиб | |||
предприятие РАН,1998 | |||
Стиральная машина для войлоков | 1922 |
|
SU210A1 |
Авторы
Даты
2015-06-10—Публикация
2013-12-17—Подача