РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ Российский патент 2015 года по МПК F41F3/04 F42B15/00 

Описание патента на изобретение RU2554917C1

Изобретение относится к области ракетной техники, а конкретно к ракетам в транспортно-пусковых контейнерах (ТПК), размещаемых на кораблях, подводных лодках и наземных стационарных и подвижных пусковых установках (ПУ).

Широко известны ПУ для старта ракет. При старте ракеты "Томагавк" из торпедных аппаратов подводных лодок (Родионов Б.И., Новичков Н.Н. "Крылатые ракеты в морском бою", Воениздат, 1987, стр.16-18) ТПК используется в качестве направляющего аппарата ПУ для старта ракеты.

Известна также ПУ для надводных кораблей (Анисимов В.Д. "Новое поколение корабельных пусковых установок". Зарубежное военное обозрение №9, 1999, стр.45-48). ТПК для минометного старта состоит из двух цилиндрических оболочек, вложенных одна в другую, причем внутренняя используется для хранения и старта ракеты.

Известен ТПК крылатой ракеты "Томагавк", предназначенный для размещения и запуска ракеты из вертикальных ПУ подводной лодки (Судостроение за рубежом №7, 1986, стр.48-51. "Пусковая установка вертикального запуска КР "Томагавк" на АПЛ "Лос-Анджелес"). ТПК выполнен в виде стального цилиндра. Внутренняя цилиндрическая поверхность ТПК является направляющей для опорных площадок ракеты при старте.

Известны модульные многоместные корабельные ПУ вертикального пуска (RU 2213925, RU 2393409), в которых внутренняя поверхность ТПК выполнена в виде цилиндрической оболочки.

Известна "Крылатая ракета в транспортно-пусковом контейнере" по патенту RU 2215981, в которой вдоль поверхности фюзеляжа закреплены опорные накладки, контактирующие с внутренней поверхностью ТПК.

При старте ракеты с рядом опорных поясов по мере их выхода из ТПК, внутренняя поверхность которого выполнена в виде цилиндрической оболочки, происходит сброс реакций в этих опорных поясах, вызывающий повышенное динамическое нагружение последующих опор и ракеты в целом.

Наиболее близкой по совокупности признаков с заявленным изобретением является "Пусковая установка для ракет многопоясного опирания" по патенту RU 2494334, которая и выбрана в качестве ближайшего аналога-прототипа. Эта ПУ содержит ТПК с направляющей цилиндрической поверхностью и раструбом в передней части, по которым происходит скольжение опорных элементов ракеты при старте. Недостатком этой конструкции является многократное ударное нагружение ракеты при сходе каждого опорного пояса ракеты с направляющей поверхности ТПК.

Цель предлагаемого изобретения - снижение нагрузок на ракету и ТПК при старте, уменьшение аэродинамического сопротивления маршевой ступени ракеты в полете и увеличение миделя ракеты в пределах ограничения заданного внутреннего диаметра ТПК.

Указанная цель достигается тем, что при старте ракеты из ТПК, передняя часть направляющей поверхности которого выполнена в виде раструба, опорные элементы передней части маршевой ступени ракеты выполнены в виде единой конической поверхности с передним диаметром, равным внутреннему диаметру соответствующего сечения ТПК в исходном положении ракеты, и углом конуса, обеспечивающим максимальную длину контакта конической опорной поверхности ракеты с конической направляющей поверхностью раструба ТПК в процессе старта. Потребная величина угла конуса опорной поверхности ракеты определяется расчетным путем с учетом упругих характеристик ракеты и ТПК, зазоров в опорных поясах ракеты, расположенной в ТПК, для условий внешнего нагружения ракеты при старте и параметров продольного движения ракеты в ТПК, вызывающих максимальные нагрузки на ракету при старте.

Отсутствие выступающих элементов стартовых опор на передней части маршевой ступени приведет к уменьшению ее аэродинамического сопротивления в полете.

На фиг.1 изображен общий вид расположения ракеты в ТПК в исходном положении, т.е. до начала движения ракеты. На фиг.2 - положение ракеты в ТПК в момент максимальной длины контакта конической опорной поверхности ракеты с конической частью направляющей поверхности ТПК.

Ракета (1) расположена в ТПК (2), имеющем цилиндрическую (3) и коническую (4) части направляющей поверхности. Опорная поверхность передней части маршевой ступени (5) ракеты выполнена в виде короткого цилиндрического участка (6), переходящего в конус (7). Устройство работает следующим образом: на начальном этапе движения ракеты в ТПК с цилиндрической частью (3) направляющей поверхности ТПК маршевая ступень ракеты контактирует только цилиндрическим участком (6) опорной поверхности. При переходе цилиндрического участка (6) опорной поверхности ракеты с цилиндрической направляющей поверхности (3) на коническую (4) происходит как бы постепенный уход направляющей поверхности (4) от опорной поверхности (6) ракеты. При этом происходит постепенное снятие реакции в опорной поверхности (6) и нарастание реакции в опорной поверхности (7) ракеты. Однако ввиду конической формы опорной поверхности (7) ракеты возникает аналогичный эффект ухода контактирующей части опорной поверхности (7) от направляющей поверхности (3) ТПК, приводящий к снижению максимальной реакции в опорной поверхности (7). В процессе последующего продольного движения ракеты в ТПК из-за упругих свойств ракеты и наличия зазоров между опорами ракеты и направляющей поверхностью ТПК возникает контакт опорной поверхности (7) ракеты с коническим участком направляющей поверхности (4) ТПК. При этом реализуется двойной эффект ухода опорной поверхности (7) ракеты от направляющей поверхности (4) ТПК, снижающий рост реакции в опорной поверхности (7) ракеты. В тоже время увеличивается площадь контакта опорной поверхности (7) ракеты, что приводит к снижению напряжений в зоне контакта этой поверхности. Последующее продольное движение ракеты в ТПК вызывает нагружение следующего опорного пояса (8) ракеты, что приводит к плавному снижению реакции в опорной поверхности (7) до нуля. Такой характер контакта опорной поверхности (7) ракеты приведет к снижению максимальной реакции в этой опоре на 20÷30%, т.к. часть работы внешней нагрузки будет затрачиваться на дополнительный поворот ракеты относительно ТПК. При этом нагрузка на опорную поверхность (7) будет распределяться на большей площади, чем при сосредоточенных опорных поясах. Наличие раструба в передней части ТПК также приведет к снижению максимальной нагрузки в опоре (8) и опоре (9), расположенной на стартовой ступени ракеты, и соответственно на ракету в целом при старте.

В других случаях эксплуатации ракеты в ТПК - транспортирование, внешнее ударное воздействие на пусковую установку - нагружение ракеты со стороны ТПК будет происходить в зоне цилиндрического участка (6) опорной поверхности, который подкрепляется шпангоутом для восприятия соответствующих нагрузок.

При тандемной схеме деления ступеней ракеты опорные поверхности 6 и (7) будут находиться на маршевой ступени (5), что приведет к уменьшению ее аэродинамического сопротивления в полете из-за отсутствия выступающих элементов стартовых опор, а также позволит увеличить внутренние объемы маршевой ступени для возможности размещения оборудования и дополнительного запаса топлива.

Похожие патенты RU2554917C1

название год авторы номер документа
ПУСКОВАЯ УСТАНОВКА ДЛЯ РАКЕТ МНОГОПОЯСНОГО ОПИРАНИЯ 2012
  • Алашеев Владимир Ильич
  • Шилов Александр Юрьевич
RU2494334C1
КРЫЛАТАЯ РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ 2001
  • Артамасов О.Я.
  • Белюстин Л.В.
  • Ефремов Г.А.
  • Леонов А.Г.
  • Мельников В.Ю.
  • Хомяков М.А.
  • Царев В.П.
RU2215981C2
СПОСОБ СТАРТА УПРАВЛЯЕМОЙ РАКЕТЫ ИЗ ТРАНСПОРТНО-ПУСКОВОГО КОНТЕЙНЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Бондаренко Л.А.
  • Ефремов Г.А.
  • Леонов А.Г.
  • Мельников В.Ю.
  • Сабиров Ю.Р.
  • Хомяков М.А.
  • Царев В.П.
RU2240489C1
РАКЕТА С ПОДВОДНЫМ СТАРТОМ 2007
  • Мельников Валерий Юрьевич
  • Натаров Борис Николаевич
  • Сабиров Юрий Рахимзянович
RU2352894C1
ТРАНСПОРТНО-ПУСКОВОЙ КОНТЕЙНЕР 2007
  • Белюстин Лев Владимирович
  • Буланников Владимир Владимирович
  • Васильев Борис Матвеевич
  • Зинин Сергей Владимирович
  • Мельников Валерий Юрьевич
RU2350885C1
МОДУЛЬНАЯ МНОГОМЕСТНАЯ КОРАБЕЛЬНАЯ ПУСКОВАЯ УСТАНОВКА ВЕРТИКАЛЬНОГО ПУСКА 2008
  • Белюстин Лев Владимирович
  • Бобров Александр Викторович
  • Максичев Александр Борисович
  • Мельников Валерий Юрьевич
  • Николаев Владимир Викторович
  • Смирнов Олег Николаевич
  • Хомяков Михаил Алексеевич
  • Сиддалингаппа Гурупрасад
  • Шритхар Арвинд Катти
  • Аласани Прасад Гоод
  • Санджей Кумар
  • Кришнамурти Пурушутам
RU2393409C1
САМОХОДНАЯ ПУСКОВАЯ УСТАНОВКА 2008
  • Белюстин Лев Владимирович
  • Буланников Владимир Владимирович
  • Леонов Александр Георгиевич
  • Мельников Валерий Юрьевич
  • Царев Виктор Павлович
  • Полынкин Юрий Анатольевич
  • Виноградов Сергей Михайлович
  • Гончарук Игорь Анатольевич
  • Ботеновский Сергей Леонидович
  • Конопляник Сергей Андреевич
  • Ничипорович Дмитрий Анатольевич
RU2386918C1
СВЕРХЗВУКОВАЯ РАКЕТА 2017
  • Леонов Александр Георгиевич
  • Лавренов Александр Николаевич
RU2686567C2
МНОГОФУНКЦИОНАЛЬНЫЙ МАЛОГАБАРИТНЫЙ ТРАНСФОРМИРУЕМЫЙ МНОГОРАЗОВЫЙ БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ И СПОСОБЫ СТАРТА 2022
  • Евдокимов Сергей Викторович
  • Бадеха Александр Иванович
  • Маталасов Сергей Юрьевич
  • Куминов Сергей Александрович
  • Жестков Юрий Николаевич
  • Анфимов Михаил Николаевич
  • Крупин Сергей Андреевич
  • Иовлев Михаил Андреевич
RU2778177C1
СПОСОБ СТАБИЛИЗАЦИИ ДВИЖЕНИЯ РАКЕТЫ ПРИ ПОДВОДНОМ СТАРТЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Резников Геннадий Сергеевич
  • Натолочный Дмитрий Игоревич
  • Сабиров Юрий Рахимзянович
  • Соколов Павел Михайлович
RU2607126C1

Иллюстрации к изобретению RU 2 554 917 C1

Реферат патента 2015 года РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ

Изобретение относится к области ракетной техники, а конкретно к ракетам в транспортно-пусковых контейнерах (ТПК), размещаемых на кораблях, подводных лодках и наземных стационарных и подвижных пусковых установках. Ракета (1) расположена в ТПК (2), имеющем цилиндрическую (3) и коническую (4) части направляющей поверхности. Опорные элементы передней части маршевой ступени ракеты выполнены в виде единой конической поверхности с углом конуса, обеспечивающим максимальной длину контакта конической опорной поверхности ракеты с конической направляющей поверхностью передней части ТПК. Достигается снижение нагрузок на ракету и ТПК при старте, уменьшение аэродинамического сопротивления маршевой ступени ракеты в полете и увеличение миделя ракеты в пределах ограничения внутреннего диаметра ТПК. 2 ил.

Формула изобретения RU 2 554 917 C1

Ракета в транспортно-пусковом контейнере (ТПК) с конической направляющей поверхностью его передней части, имеющая ряд поясов стартовых опор, отличающаяся тем, что опорные элементы передней части маршевой ступени ракеты выполнены в виде единой конической поверхности с передним диаметром, равным внутреннему диаметру соответствующего сечения ТПК в исходном положении ракеты, и углом конуса, обеспечивающим максимальную длину контакта конической опорной поверхности ракеты с конической направляющей поверхностью передней части ТПК в процессе старта.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554917C1

РАЗДЕЛЬНАЯ ЖИДКОСТНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2012
  • Хабибулин Александр Тимирбаевич
  • Плеханов Петр Георгиевич
  • Порецков Михаил Евгеньевич
  • Стрижов Виталий Павлович
RU2492334C1
ТРАНСПОРТНО-ПУСКОВОЙ МОДУЛЬ 2003
  • Потапов В.Ф.
  • Резников В.Ф.
  • Ефремов Г.А.
  • Царёв В.П.
RU2245503C1
СБРАСЫВАЕМЫЙ ГОЛОВНОЙ КОНИЧЕСКИЙ ОБТЕКАТЕЛЬ ПУСКОВОГО КОНТЕЙНЕРА 1992
  • Белобрагин В.Н.
  • Ганов Ю.К.
  • Шумилин В.А.
  • Зверев И.В.
  • Домарев С.В.
  • Ртищев С.И.
RU2037134C1
US 3289587 A, 06.12.1966

RU 2 554 917 C1

Авторы

Алашеев Владимир Ильич

Шилов Александр Юрьевич

Юнак Екатерина Владимировна

Даты

2015-06-27Публикация

2014-01-29Подача