СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ГЛЮКОЗАМИНА В КСАНТАНОВОЙ КАМЕДИ Российский патент 2015 года по МПК A61K31/7008 A61K47/36 A61K9/51 A61J3/07 B01J13/02 B82B3/00 

Описание патента на изобретение RU2555055C1

Изобретение относится к области нанотехнологии, в частности получения нанокапсул сульфата глюкозамина в ксантановой камеди физико-химическим методом осаждения нерастворителем.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00, Российская Федерация, опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя, получение микрокапсул химическим методом полимеризации.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т.XLV, №5-6, с.125-135 описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т.LII, №1, с.48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Спляющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющей при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08), A61K 47/26, A61K 47/32, A61K 47/34, A61K 47/36, A61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009, описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, а отсюда и невысокий выход конечного продукта.

В пат. WO/2010/014011 NL, МПК A61K 9/50; B01J 13/02; A61K 9/50; B01J 13/02, опубликован 4.02.2010, описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих: ядро частицы диаметром 90 нм до 23 мкм, содержащее не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты, эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.

Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.

В пат. WO/2010/119041 EP, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации, также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, процесс выделения микрокапсул осуществляется через каскад фильтров с размерами пор от 0,9 до 0,1 мкм.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805 EP, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314, МПК B05D 7/00, 2006.01.01, B05D 007/00, B05C 3/02, 2006.01.01, B05C 003/02; B05C 11/00, 2006.01.01, B05C 011/00; B05D 1/18, 2006.01.01, B05D 001/18; B05D 3/02, 2006.01.01, B05D 003/02; B05D 3/06, 2006.01.01, B05D 003/06 от 10.03.2011, US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030 US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов являются сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

В пат. WO/2011/104526 GB, МПК B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий, по весу; и б) сшивание полиуретанового диспергатора в присутствии твердой и жидкой среды таким образом, чтобы инкапсулировать твердые частицы, где полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернилах струйной печати, для фармацевтической промышленности данная методика неприменима.

B пат. WO/2011/056935 US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которые инкапсулируют агент, обеспечивающий благоприятное воздействие, чтобы обеспечивать приемущества, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733 EP, МПК B01J 13/16, опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (A) и (B) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/161229 EP, МПК A61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50, опубликован 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства, и порошковые моющие средства; все для личной гигиены и ухода за волосами, включая шампуни, кондиционеры, кремы для расчесывания, стайлинг-кремы, мыло, кремы для тела и т.п.; дезодоранты и антиперспиранты.

Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул сульфата глюкозамина в ксантановой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул сульфата глюкозамина, отличающимся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, а также получения нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя-гексана, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул сульфата глюкозамина ксантановой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя-гексана.

Результатом предлагаемого метода является получение нанокапсул сульфата глюкозамина в ксантановой камеди при 25°C в течение 15 минут. Выход микрокапсул составляет более 90%.

ПРИМЕР 1. Получение нанокапсул сульфата глюкозамина в ксантановой камеди с использованием гексана в качестве осадителя, соотношение 1:3

К 1 г сульфата глюкозамина небольшими порциями добавляют в суспензию 3 г ксантановой камеди в 5 мл бутилового спирта, содержащего 0,01 г препарата E472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 6 мл гексана. Полученную суспензию нанокапсул отфильтровывают, промывают гексаном и сушат.

Получено 4 г белого порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул сульфата глюкозамина в ксантановой камеди с использованием гексана в качестве осадителя, соотношение 5:1

К 5 г сульфата глюкозамина небольшими порциями добавляют в суспензию 1 г ксантановой камеди в 5 мл бутилового спирта, содержащего 0,01 г препарата E472c в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 6 мл гексана. Полученную суспензию нанокапсул отфильтровывают, промывают гексаном и сушат.

Получено 6 г белого порошка. Выход составил 100%.

Получены нанокапсулы сульфата глюкозамина в ксантановой камеди физико-химическим методом осаждения нерастворителем с использованием гексана в качестве нерастворителей. Процесс прост в исполнении и длится в течение 15 минут, не требует специального оборудования.

Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул сульфата глюкозамина.

Похожие патенты RU2555055C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ХОНДРОИТИНА В КСАНТАНОВОЙ КАМЕДИ В ГЕКСАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2555785C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В КСАНТАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2550932C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ГЛЮКОЗАМИНА В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2557975C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ГЛЮКОЗАМИНА В КОНЖАКОВОЙ КАМЕДИ В ГЕКСАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2555782C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564898C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2561683C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АМИНОГЛИКОЗИДНЫХ АНТИБИОТИКОВ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2563118C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В КОНЖАКОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564890C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2550918C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2569739C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ГЛЮКОЗАМИНА В КСАНТАНОВОЙ КАМЕДИ

Изобретение относится к области нанокапсулирования при получении нанокапсул сульфата глюкозамина в оболочке из ксантановой камеди. Согласно способу по изобретению сульфат глюкозамина порциями добавляют в суспензию ксантановой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества. Смесь перемешивают, затем добавляют гексан, полученную суспензию нанокапсул отфильтровывают, промывают гексаном и сушат. Процесс осуществляют при 25оС в течение 15 минут. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул сульфата глюкозамина в ксантановой камеди и увеличение выхода по массе. 2 пр.

Формула изобретения RU 2 555 055 C1

Способ получения нанокапсул сульфата глюкозамина в ксантановой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, при этом сульфат глюкозамина порциями добавляют в суспензию ксантановой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, смесь перемешивают, затем добавляют гексан, полученную суспензию нанокапсул отфильтровывают, промывают гексаном и сушат, процесс осуществляют при 25°C в течение 15 мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2555055C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
СОЛОДОВНИК В.Д
Микрокапсулирование, 1980, Москва, "Химия", стр.136-139
Способ получения микрокапсул 1978
  • Нижник Валерий Васильевич
  • Жартовский Владимир Михайлович
  • Баранова Анна Ивановна
SU676316A1
Способ получения микрокапсул 1976
  • Герберт Бенсон Шер
SU707510A3
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА 1993
  • Хироаки Окада[Jp]
  • Яйой Иноуе[Jp]
  • Ясуаки Огава[Jp]
RU2098121C1
Продолговатый поражающий элемент для снаряжения артиллерийских снарядов типа шрапнели 1921
  • Богуславский Л.Ф.
SU4785A1
УДЕРЖИВАЕМАЯ ВЫПУСКНАЯ КАПСУЛА (ВАРИАНТЫ), СПОСОБ ЕЕ СБОРКИ И УСТРОЙСТВО ДЛЯ ВВЕДЕНИЯ ЖВАЧНОМУ ЖИВОТНОМУ 1992
  • Лайонел Барри Лоув
  • Колин Джон Макартур
RU2114577C1
WO 1987001587 A1, 26.03.1987

RU 2 555 055 C1

Авторы

Кролевец Александр Александрович

Богачев Илья Александрович

Никитин Кирилл Сергеевич

Бойко Екатерина Евгеньевна

Даты

2015-07-10Публикация

2014-03-18Подача