СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ Российский патент 2015 года по МПК A61K9/51 A61K31/07 A61K31/355 A61K31/375 A61K31/59 B01J13/06 A23L1/302 A23L1/303 B82B1/00 

Описание патента на изобретение RU2555556C1

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

Известен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования (пат. RU 2173140, МПК А61К 009/50, А61К 009/127, опубл. 10.09.2001).

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

Известен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин (пат. RU 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009). Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками данного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, при котором в воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования (пат. RU 2134967, МПК A01N53/00, A01N 25/28, опубл. 27.08.1999).

Недостатком метода является диспергирование в водной среде, что делает способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул витаминов, при котором в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - витамины (А, С, D, Е, Q10) при получении нанокапсул методом осаждения нерастворителем с применением хлороформа в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки частиц и витамины - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул витаминов А, С, D, Е Q10, а также и экстрактов элеутерококка и жень-шеня.

Пример 1. Получение нанокапсул витамина А в натрий карбоксиметилцеллюлозы, соотношение ядро:оболочка 1:3

100 мг витамина А добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 2. Получение нанокапсул витамина С в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3

100 мг витамина С добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 3. Получение нанокапсул витамина D в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3

100 мг витамина D добавляют в суспензию натрий карбоксиметилцеллюлозе в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 4. Получение нанокапсул витамина Е в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3

100 мг витамина Е добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 5. Получение нанокапсул витамина Q10 в альгинате натрия, соотношение ядро:оболочка 1:3

100 мг витамина Q10 в диметилсульфоксиде добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,34 г порошка нанокапсул. Выход составил 100%.

Пример 6. Получение нанокапсул экстракта элеутерококка в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3

100 мг экстракта элеутерокка добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропиловом спирте, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 7 Получение нанокапсул экстракта жень-шеня в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3

100 мг экстракта жень-шеня добавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/с. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Похожие патенты RU2555556C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559577C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КОНЖАКОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2555753C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2557900C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2562561C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КСАНТАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2565392C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2567339C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БЕТУЛИНА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2574899C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ В КОНЖАКОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2569735C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2-ЦИС-4-ТРАНС-АБСЦИЗОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564892C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2,4-ДИХЛОРФЕНОКСИУКСУСНОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2550920C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, в котором согласно изобретению в качестве ядер нанокапсул используются витамины, в качестве оболочки - натрий карбоксиметилцеллюлоза, которую осаждают из суспензии в изопропиловом спирте путем добавления хлороформа в качестве нерастворителя с последующей сушкой при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе). 7 пр.

Формула изобретения RU 2 555 556 C1

Способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются витамины, в качестве оболочки - натрий карбоксиметилцеллюлоза, которую осаждают из суспензии в изопропиловом спирте путем добавления хлороформа в качестве нерастворителя с последующей сушкой при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2015 года RU2555556C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
Солодовник В.Д
Микрокапсулирование/ М.: Химия, 1980 г
Приспособление для подвешивания тележки при подъемках сошедших с рельс вагонов 1920
  • Немчинов А.А.
SU216A1
МИКРОКАПСУЛЫ 2004
  • Койн Боб
  • Фараэр Джон
  • Гуен Себастьен
  • Хансен Карстен Бьёрн
  • Инграм Ричард
  • Исак Турбен
  • Томас Линда Валери
  • Тсе Катрин Луиз
RU2359662C2
US 7488503 B1, 10.02.2009
US 20090053317 A1, 26.02.2009
CN 101422446 A, 06.05.2009
US 20070248652 A1, 25.10.2007

RU 2 555 556 C1

Авторы

Кролевец Александр Александрович

Богачев Илья Александрович

Никитин Кирилл Сергеевич

Бойко Екатерина Евгеньевна

Медведева Яна Владимировна

Даты

2015-07-10Публикация

2014-05-06Подача