СПОСОБ СОЗДАНИЯ КОМПОЗИТНЫХ ПОКРЫТИЙ Российский патент 2015 года по МПК C25D15/00 

Описание патента на изобретение RU2557188C2

Изобретение относится к области получения наноструктурированных материалов, в том числе композиционных покрытий, получаемых электрохимическим осаждением, и может быть использовано для создания материалов с заданными свойствами.

Наиболее близким к заявляемому изобретению является способ получения композиционного покрытия, содержащего ультрадисперсные алмазы [патент на изобретение BY, №13878 C1, C25D 15/00, 30.12.2010. «Способ получения биосовместимых покрытий на хирургических имплантах». Авторы Чигринова Н.М., Ильющенко А.Ф., Чигринов В.Е., Чигринов В.В.], который ведут в потенциостатическом режиме при напряжении 260 В в течение 20 минут с одновременным пропусканием через раствор ультразвуковых колебаний частотой не менее 22 кГц.

Однако данный способ влияет на процесс осаждения, что делает покрытия неравномерными и рыхлыми с высокой пористостью.

Изобретение направлено на разделение частиц в суспензии на основе водного раствора электролита до наноразмерной величины, поддержание ее длительное время в рабочем состоянии в течение всего срока эксплуатации электролита и предотвращение процесса седиментации.

Это достигается тем, что процесс осаждения проводят при постоянном восстановлении отработанной суспензии по размерам ультрадисперсных частиц воздействием ультразвуковых колебаний путем замены отработанной суспензии на восстановленную каждые 15-20 минут принудительной циркуляцией между сообщающимися ваннами гальванического осаждения и восстановления электролита.

Таким образом, происходит увеличение срока эксплуатации электролита.

Способ осуществляется следующим образом.

Навеска частиц заданной концентрации помещается в водный раствор электролита. Далее производится перемешивание в течение 15-20 мин при комнатной температуре в ультразвуковой ванне, обеспечивающей частоту колебаний до 40 кГц. Затем рабочий объем приготовленной суспензии помещается в электролитическую ячейку для осаждения. Каждые 15-20 минут суспензия обновляется путем замены отработанной суспензии восстановленной принудительной циркуляцией между сообщающимися сосудами гальванического осаждения и восстановления суспензии.

При ультразвуковом воздействии происходит интенсивное перемешивание и разделение частиц, которые затем доставляются к катоду с ионами металла, что обеспечивает их высокую и равномерную концентрацию в металлической матрице покрытия. За счет упорядоченности наночастиц на поверхности изделия формируется композиционное покрытие со структурой, имеющей высокую плотность и твердость.

Примеры осуществления способа

Пример 1. В работе Козенков О.Д., Пташкина Т.В., Косилов А.Т. Исследование суспензий ультрадисперсных алмазов в диспергирующей среде на основе водных растворов электролитов (Вестник ВГТУ, 2012 г., Т. 8, вып. 7.1, стр. 65-69) экспериментально установлено, что после завершения ультразвукового воздействия происходит очень быстрая коагуляция нанодисперсных суспензий, которая протекает вплоть до достижения нулевой концентрации ультрадисперсных алмазов (УДА) в растворе электролита.

Результаты исследования показали возможность восстановления коагулировавшей суспензии. С этой целью суспензии подвергались повторной ультразвуковой обработке, после чего определялся размер полученных частиц в суспензии.

Установлено, что ультразвуковое воздействие с частотой до 40 кГц на суспензии УДА приводит к их полному восстановлению по концентрации и размерам частиц. При этом разбиваются крупные агломераты, и суспензия практически полностью соответствует исходному состоянию, то есть имеет тот же размер частиц УДА и ту же концентрацию частиц УДА в растворе электролита, что и свежеприготовленная. Обнаружено влияние продолжительности ультразвукового воздействия на размер частиц в суспензии. Установлено, что с ростом продолжительности ультразвукового воздействия размер частиц УДА в суспензии уменьшается, достигая некоторого предельного значения. Данные факты позволяют сделать вывод о том, что агломераты частиц УДА образуются за счет слабого ван-дер-ваальсового взаимодействия.

Пример 2. В рамках тематического плана НИР, выполняемой по заданию Минобрнауки России в Воронежском государственном техническом университете, методом гальвано-химического осаждения были получены медные и никелевые композиционные электрохимические покрытия, содержащие в металлической матрице ультрадисперсные алмазы (УДА) или углеродные нанотрубки (УНТ) (Cu-УДА, Cu-УНТ, Ni-УДА, Ni-УНТ). Использовали водные электролит меднения либо электролит никелирования на основе солей CuSO4, CuCl2, либо NiSO4, NiCl2 соответственно с добавлением УДА или УНТ от 0 до 10 г/л.

Применяли различные режимы осаждения, при которых плотность тока варьировалась от 0,5 до 6 А/дм2. Частота ультразвуковых колебаний составляла до 40 кГц.

Длительность осаждения и количество циклов замены электролита зависят от необходимой толщины покрытия. Полная смена электролита-суспензии происходит за 15-20 минут. Количество циклов можно регулировать, меняя интенсивность перекачки электролита-суспензии из ячейки электролитического осаждения в емкость ультразвуковой обработки суспензии.

Исследования полученных композиционных электролитических покрытий включали измерение микротвердости с помощью микротвердомера ПМТ-3, исследование поверхности образцов на сканирующем электронном микроскопе JEOL JSM-6380 при различных увеличениях, измерение плотности.

Микротвердость и плотность покрытий зависят от концентрации и размера частиц УДА или УНТ, размера получаемого зерна, а также от содержания примесей. Анализ структурной организации медных и никелевых катодных осадков показал, что при введении частиц УДА или УНТ происходит измельчение зерна, в 1,5-2 раза повышается твердость, а плотность незначительно снижается до 8,1 г/см3. Поверхность получается сплошной, равномерной, матовой, а в случае с никелевыми покрытиями - с элементами блеска, покрытие не отслаивается.

В результате полученные экспериментальные данные имеют важное практическое значение, поскольку позволяют предотвращать процессы коагуляции и седиментации частиц УДА в процессе электролитического осаждения композиционных наноструктурированных покрытий путем ультразвукового воздействия на суспензию на основе водного раствора электролита.

Похожие патенты RU2557188C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЬ-АЛМАЗНОГО ПОКРЫТИЯ 2016
  • Федотов Сергей Александрович
  • Федотова Наталья Сергеевна
  • Рябчикова Людмила Петровна
  • Демаков Александр Геннадьевич
RU2639411C2
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННОГО ЭЛЕКТРОЛИТИЧЕСКОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ 2010
  • Ненашев Максим Владимирович
  • Калашников Владимир Васильевич
  • Ибатуллин Ильдар Дугласович
  • Журавлев Андрей Николаевич
  • Якунин Константин Петрович
  • Галлямов Альберт Рафисович
  • Кобякина Ольга Анатольевна
  • Рогожин Павел Викторович
  • Чеботаев Александр Анатольевич
RU2476628C2
СПОСОБ НАНЕСЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ 1992
  • Осипов Юрий Николаевич[Ua]
  • Громыко Игорь Алексеевич[Ua]
  • Доценко Сергей Ильич[Ua]
  • Костров Владимир Федорович[Ua]
RU2075557C1
Композиционное металл-алмазное покрытие, способ его получения, алмазосодержащая добавка электролита и способ ее получения 2018
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Рыжов Евгений Васильевич
RU2699699C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ 2007
  • Ларионова Ирина Семеновна
  • Беляев Вячеслав Николаевич
  • Ильиных Константин Федорович
  • Фролов Александр Валериевич
  • Бычин Николай Валерьевич
  • Митрофанов Вячеслав Михайлович
RU2357017C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ЦИНКА 2013
  • Глущенко Валерий Станиславович
RU2558327C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ЦИНКА 2000
  • Лунг Бернгард
  • Буркат Г.К.
  • Долматов В.Ю.
  • Сабурбаев В.Ю.
RU2169798C1
СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ, СОДЕРЖАЩЕГО НАНОАЛМАЗНЫЕ ПОРОШКИ 2012
  • Полушин Николай Иванович
  • Журавлев Владимир Васильевич
  • Маслов Анатолий Львович
  • Степарева Нина Николаевна
RU2487201C1
Композиционное металл-алмазное покрытие, способ его получения, дисперсная система для осаждения композиционного металл-алмазного покрытия и способ ее получения 2019
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Рыжов Евгений Васильевич
  • Светлов Геннадий Валентинович
RU2706931C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ЗОЛОТА 2000
  • Лунг Бернгард
  • Буркат Г.К.
  • Долматов В.Ю.
  • Сабурбаев В.Ю.
RU2191227C2

Реферат патента 2015 года СПОСОБ СОЗДАНИЯ КОМПОЗИТНЫХ ПОКРЫТИЙ

Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза. Осаждение проводят при постоянном восстановлении отработанной суспензии по размерам ультрадисперсных частиц воздействием ультразвуковых колебаний путем замены отработанной суспензии на восстановленную каждые 15-20 минут принудительной циркуляцией между сообщающимися ваннами гальванического осаждения и восстановления электролита. Технический результат: способ позволяет поддерживать электролит-суспензию в рабочем состоянии в течение всего срока эксплуатации электролита без седиментации частиц. 2 пр.

Формула изобретения RU 2 557 188 C2

Способ получения композиционного покрытия, включающий осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза, отличающийся тем, что осаждение проводят при постоянном восстановлении отработанной суспензии по размерам ультрадисперсных частиц воздействием ультразвуковых колебаний путем замены отработанной суспензии на восстановленную каждые 15-20 минут принудительной циркуляцией между сообщающимися ваннами гальванического осаждения и восстановления электролита.

Документы, цитированные в отчете о поиске Патент 2015 года RU2557188C2

Железнодорожная визирка 1929
  • Желваков И.А.
SU13878A1
ПРИСПОСОБЛЕНИЕ ДЛЯ РАЗДВИГАНИЯ ВЫТЯЖНЫХ ЦИЛИНДРОВ ПРЯДИЛЬНЫХ МАШИН 1929
  • Борисов А.Г.
SU18211A1
Нефтяной конвертер 1922
  • Кондратов Н.В.
SU64A1
СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ, МОДИФИЦИРОВАННЫХ НАНОАЛМАЗАМИ 2007
  • Петров Игорь Леонидович
RU2368709C2

RU 2 557 188 C2

Авторы

Козенков Олег Дмитриевич

Пташкина Татьяна Владимировна

Косилов Александр Тимофеевич

Даты

2015-07-20Публикация

2013-11-15Подача