СПОСОБ НАНЕСЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ Российский патент 1997 года по МПК C25D15/00 C25D5/20 

Описание патента на изобретение RU2075557C1

Изобретение относится к гальваностегии, в частности к нанесению композиционных алмазосодержащих хромовых покрытий на изделия из стали, алюминия и других металлов, и может быть использовано в машиностроении, приборостроении и других отраслях промышленности при нанесении покрытий электролитическим способом.

Известен способ получения композиционных покрытий на основе хрома электролитическим осаждением из электролита хромирования, содержащего 5 40 г/л коллоидных частиц-кластеров синтетического алмаза размером 0,001 0,01 мкм [1] аналог-3. РСТ N 89/07668, C25D15/00, опубл. 24.08.89). Данный способ позволяет получить износостойкие покрытия с улучшенными антифрикционными свойствами, однако не обеспечивает предотвращение образования пор в наносимом покрытии, что оказывает отрицательное влияние на качество покрытия.

Кроме того, известен способ получения композиционных покрытий, включающий катодное (при прямой полярности тока) осаждение покрытия из электролита, содержащего твердые частицы, затем анодную обработку покрываемого изделия в том же электролите и снова катодное осаждение покрытия [2] Недостатком данного способа является пористость покрытия из-за наличия на поверхности микропузырьков водорода.

Известен также способ нанесения гальванического покрытия, включающий предварительную обработку поверхности путем возбуждения ультразвуковых колебаний в электролите для лаппингования поверхности перед нанесением покрытия (а.з. Япония N 61-28755, C 25 D 5/20, опубл. 02.07.86). Недостаток способа образование пор в покрытии за счет того, что в процессе электролитического осаждения покрытия пузырьки газа, содержащиеся в электролите, адсорбируются на шероховатостях поверхности изделия катода и препятствуют проникновению в низ частиц покрытия.

Наиболее близким к заявленному способу по совокупности признаков является способ нанесения гальванических покрытий по [3] выбранный авторами в качестве прототипа.

В соответствии со способом по [3] осуществляют последовательное осаждение покрытия из электролита при прямой полярности, удаление части нанесенного покрытия при обратной полярности и заключительное осаждение слоя покрытия при прямой полярности, одновременно воздействуя на электролит ультразвуковыми колебаниями. Это позволяет ускорить процесс нанесения покрытия за счет интенсификации процесса и получить равномерное по толщине покрытие. Однако так же, как и вышеупомянутые аналоги, прототип не решает задачи получения беспористого покрытия.

Заявляемое изобретение направлено на повышение качества покрытия и сокращение длительности процесса.

Для достижения этих целей способ нанесения гальванических покрытий включает последовательное осаждение слоя покрытия на электролите при прямой полярности тока, удаление части этого покрытия при обратной полярности и заключительное осаждение покрытия при прямой полярности тока, причем на электролит в течение всего процесса воздействуют ультразвуковыми колебаниями, дополнительно возбуждают ультразвуковые колебания резонансной частоты в покрываемом изделии, при этом используют электролит, содержащий ультрадисперсную фазу.

При возбуждении ультразвуковых колебаний частоты 20 100 кГц в электролите, содержащем ультрадисперсную фазу, обеспечивается, помимо дегазации электролита, равномерное распределение ультрадисперсных частиц в объеме электролита, а также увеличение скорости диффузии порций электролита, несущих дисперcные частицы к поверхности изделия.

Одновременное возбуждение ультразвуковых колебаний резонансной частоты в изделии в процессе нанесения покрытия позволяет удалить газы, адсорбированные на шероховатостях поверхности изделия, в том числе пузырьки водорода, постоянно образующиеся на катоде изделии при электролитическом осаждении, тем самым снимая наводораживание поверхности изделия. Кроме того, возбуждение ультразвуковых колебаний в изделии улучшает рассеивание ультрадисперсных частиц в зоне покрытия и заполнение микропор освобожденных от газов, ультрадисперсными частицами. Таким образом, обеспечивается получение беспористых, равномерных по составу композиционных покрытий с увеличенной плотностью покрытия.

Выбор резонансной частоты ультразвуковых колебаний изделия обусловлен минимальной мощностью ультразвукового генератора при резонансе, а также тем, что при этом достигаются условия максимальной дегазации поверхности изделия, на которое наносят покрытие и обеспечивается максимальная глубина проникновения частиц покрытия во впадины, образованные шероховатостями поверхности изделия, что также способствует повышению качества покрытия при одновременном сокращении времени нанесения покрытия.

Равномерность по толщине достигается последовательным электролитическим осаждением покрытия при прямой полярности, удалением образовавшихся выступающих неровностей нанесенного покрытия при обратной полярности и заключительным осаждением слоя покрытия при прямой полярности. При этом, в силу вышеуказанных причин, требуется меньшая, чем у прототипа, длительность каждого из трех перечисленных этапов нанесения покрытия.

Способ осуществляется следующим образом.

Изделие, на которое наносят покрытие, размещают в ванне с электролитом, содержащим дисперсную фазу. С изделием соединяют волновод ультразвукового излучателя. Излучающую поверхность второго ультразвукового излучателя размещают в электролите. К обрабатываемому изделию (катоду) подсоединяют отрицательный полюс источника постоянного тока, к аноду положительный полюс. Доводят температуру электролита до температуры 50oC, выводят генераторы ультразвуковых колебаний в рабочий режим. Устанавливают резонансную частоту ультразвуковых колебаний изделий в зависимости от материала и длины изделия. Устанавливают интенсивность ультразвуковых колебаний в электролите 0,01 0,1 Вт/см2 при частоте 22 кГц; интенсивность колебаний в изделии 0,2 0,5 Вт/см2.

Замыкают контакты источника тока и при плотности тока 10 15 А/дм2 и прямой полярности осаждают покрытие в течение 150 200 с, затем переключают полярность источника тока и при плотности тока 5 7,5 А/дм2 продолжают процесс в течение 50 110 с. После чего снова переключают источник тока на прямую полярность и при плотности тока 10 - 15А/дм2 завершают процесс нанесения покрытия в течение 150 200 с.

Полученное в результате нанесения по предложенному способу композиционное покрытие имеет ровную, гладкую поверхность, беспористую и равномерно обогащенную по объему частицами дисперсной фазы.

Ниже приведен конкретный пример осуществления заявляемого способа нанесения гальванических покрытий.

Пример 1. В ванну загружали 0,5 м3 хромового электролита, содержащего дисперсную фазу в виде кластеров синтетического алмаза размером 0,001 0,01 мкм состав электролита, г/л: хромовый ангидрид 150, серная кислота 5, цинк 10, кластер 15.

Покрытие наносили на ножовочное полотно для ручной распиловки металла. Длина изделия l 0,3 м, материал сталь. Резонансную частоту изделия находим расчетным путем. В соответствии с теорией колебаний ( см. Лепеидин Л.Ф. Акустика. М. Высшая школа, 1978, с. 119) резонансная частота стержня определяется из соотношения

где m мода колебаний; c скорость звука в материале; l длина стержня.

Учитывая, что l 0,3 м, c 5,17•103 м/с, получили частоту основного резонанса:
;

Для возбуждения в ультразвуковом диапазоне выбирает 3-ю моду колебаний (m 3):
f3 3•f 26 кГц.

Нанесение покрытия вели при температуре электролита 50oC, частоте ультразвуковых колебаний в электролите 22 кГц, интенсивности ультразвуковых колебаний в электролите 0,03 Вт/см2; частоте ультразвуковых колебаний в изделии 26 кГц, интенсивности ультразвуковых колебаний в изделии 0,3 Вт/см2.

1. Плотность тока при прямой полярности 12 A/дм2, продолжительность процесса с прямой полярностью 160 с.

2. Плотность тока при обратной полярности 6,2 А/дм2; продолжительность процесса с обратной полярностью 80 с
3. Плотность тока при прямой полярности 12 А/ дм2, продолжительность процесса с прямой полярностью 120 с Суммарное время нанесения покрытия 6 мин.

Нанесение гальванического хромового покрытия по данному способу позволило повысить износостойкость ножовочного полотна за счет повышения качества нанесенного покрытия.

Износостойкость ножовочного полотна определялась путем резки прутка ⊘ 18 мм из стали 45. Полотно с покрытием, нанесенным по заявленному способу, отработало 42 ч. Ниже приведена сравнительная таблица качества композиционных хромовых покрытий, полученных различными способами.

Похожие патенты RU2075557C1

название год авторы номер документа
СПОСОБ БЕСПОРИСТОГО ТВЁРДОГО ХРОМИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЧУГУНОВ И СТАЛЕЙ 2015
  • Голубев Дмитрий Владимирович
  • Минин Антон Владимирович
  • Тихонов Аркадий Константинович
  • Троцик Владимир Иванович
  • Червяков Андрей Александрович
  • Чикуров Александр Владимирович
RU2603935C1
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО ХРОМОВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
RU2422562C1
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ КОМПОЗИЦИОННОГО ХРОМОВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
RU2422563C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЭЛЕКТРОЛИТА ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ МЕТАЛЛОВ 2011
  • Ткачев Алексей Григорьевич
  • Литовка Юрий Владимирович
  • Пасько Александр Анатольевич
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
  • Ткачев Максим Алексеевич
RU2477341C2
СПОСОБ ИНТЕНСИФИКАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ 2007
  • Зарембо Виктор Иосифович
  • Зарембо Яна Викторовна
RU2344204C1
ЭЛЕКТРОЛИТ ХРОМИРОВАНИЯ И СПОСОБ ПОЛУЧЕНИЯ ХРОМОВОГО ПОКРЫТИЯ НА СТАЛЬНЫХ ДЕТАЛЯХ 2002
  • Каблов Е.Н.
  • Полукаров Ю.М.
  • Едигарян А.А.
  • Жирнов А.Д.
  • Ильин В.А.
  • Налетов Б.П.
  • Тюриков Е.В.
RU2231581C1
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО НИКЕЛЕВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Мищенко Сергей Владимирович
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
  • Ткачев Максим Алексеевич
RU2411309C2
СПОСОБ СОЗДАНИЯ КОМПОЗИТНЫХ ПОКРЫТИЙ 2013
  • Козенков Олег Дмитриевич
  • Пташкина Татьяна Владимировна
  • Косилов Александр Тимофеевич
RU2557188C2
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННОГО ЭЛЕКТРОЛИТИЧЕСКОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ 2010
  • Ненашев Максим Владимирович
  • Калашников Владимир Васильевич
  • Ибатуллин Ильдар Дугласович
  • Журавлев Андрей Николаевич
  • Якунин Константин Петрович
  • Галлямов Альберт Рафисович
  • Кобякина Ольга Анатольевна
  • Рогожин Павел Викторович
  • Чеботаев Александр Анатольевич
RU2476628C2
Композиционное металл-алмазное покрытие, способ его получения, дисперсная система для осаждения композиционного металл-алмазного покрытия и способ ее получения 2019
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Рыжов Евгений Васильевич
  • Светлов Геннадий Валентинович
RU2706931C1

Иллюстрации к изобретению RU 2 075 557 C1

Реферат патента 1997 года СПОСОБ НАНЕСЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ

Изобретение относится к области нанесения гальванических покрытий на изделия из стали, алюминия и других металлов, и может найти применение в машиностроении, приборостроении и других отраслях промышленности. Сущность: способ включает последовательно осаждение слоя покрытия из электролита при прямой полярности тока, удаление части этого покрытия при обратной полярности тока, удаление части этого покрытия при обратной полярности тока и заключительное осаждение покрытия при прямой полярности тока, причем на электролит в течение всего процесса воздействуют ультразвуковыми колебаниями, а в покрываемом изделии дополнительно возбуждают ультразвуковые колебания резонансной частоты, при этом используют электролит, содержащий ультрадисперсную фазу. 1 табл.

Формула изобретения RU 2 075 557 C1

Способ нанесения гальванических покрытий, включающий последовательное осаждение слоя покрытия из электролита при прямой полярности тока, удаление части этого покрытия при обратной полярности и заключительное осаждение покрытия при прямой полярности тока, причем на электролит в течение всего процесса воздействуют ультразвуковыми колебаниями, отличающийся тем, что дополнительно возбуждают ультразвуковые колебания резонансной частоты в покрываемом изделии, при этом используют электролит, содержащий ультрадисперсную фазу.

Документы, цитированные в отчете о поиске Патент 1997 года RU2075557C1

Способ получения композиционных покрытий на основе хрома 1986
  • Шебалин Александр Иванович
  • Губаревич Валерий Донатович
  • Привалко Юрий Николаевич
  • Брыляков Петр Михайлович
  • Беседин Василий Иванович
  • Сакович Геннадий Викторович
  • Черемисин Александр Яковлевич
  • Котов Александр Николаевич
  • Козловский Станислав Алексеевич
  • Альтшулер Наум Борисович
SU1694710A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ получения комбинированных покрытий 1974
  • Пинхасик Леля Максимовна
  • Левина Вера Филипповна
  • Браверман Бася Лейбовна
  • Бурьянов Валентин Алексеевич
  • Жуковская Надежда Васильевна
SU622875A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1

RU 2 075 557 C1

Авторы

Осипов Юрий Николаевич[Ua]

Громыко Игорь Алексеевич[Ua]

Доценко Сергей Ильич[Ua]

Костров Владимир Федорович[Ua]

Даты

1997-03-20Публикация

1992-05-20Подача