Изобретение относится к текучему теплоносителю и его применению.
Текучие теплоносители предназначены для охлаждения многих устройств, подвергающихся температурам, которые считаются слишком высокими для нормальной работы устройства.
Например, их используют для охлаждения микропроцессоров, электронных устройств, смонтированных на транспортном средстве, тепловых или электрических двигателей.
Их также используют для охлаждения ядерных реакторов.
Вода является одной из лучших текучих сред, известных в качестве текучего теплоносителя.
Тем не менее, в нее могут вводиться добавки, такие как этиленгликоль или пропиленгликоль, которые препятствуют ее замерзанию при слишком низких температурах.
Но везде, где требуется уменьшение веса, возможность использовать меньшее количество текучего теплоносителя (вода, вода + этиленгликоль) при тех же, даже более высоких возможностях теплообмена, представляет большой интерес.
Таким образом, необходимо повышать теплопроводность текучего теплоносителя. Недавно было показано, что введение наночастиц в текучий теплоноситель существенно повышает теплопроводность текучего теплоносителя. Эти новые текучие теплоносители называются нанофлюидами (CHOI (S) - Enhancing Thermal Conductivity of Fluids with Nanoparticules. - The American Society of Mechanical Engineers, New-York, vol.231/MD-vol.66:99-105, nov. 1995, или YU (W.) - France (D.) - Routbort (J.) - CHOI (S.) - Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. - Heat Transfer Engineering, vol.29, p.432-460 (2008), или DAS (S.) - CHOI (S.) - YU (W.) - PADEEP (T.) - Nanofluids: Science and Technology. - J.Wiley (2008)).
Добавление различных типов наночастиц в текучую среду для повышения ее термических свойств широко изучалось и в настоящее время оказалось, что нет необходимости в том, чтобы используемые наночастицы состояли по своей природе из вещества, обладающего высокой теплопроводностью, такого как металл, и что подходящими свойствами обладают значительно менее эффективные в тепловом отношении материалы, такие как глины или оксиды: галлоизит, лапонит, диоксид кремния (SiO2), оксид цинка (ZnO), оксид алюминия (Al2O3), причем последние являются промышленно доступными. Можно оценить такие параметры, как прочность, т.е. устойчивость нанофлюида во времени в процессе использования, и общий энергетический баланс, т.е. компромисс между повышением теплопроводности и повышением вязкости флюида.
Для сравнения в ламинарном потоке считается, что общий энергетической баланс является положительным, когда повышение вязкости в 5 раз меньше повышения теплопроводности.
Действительно, слишком высокое повышение вязкости вызывает необходимость в увеличении мощности группы нагнетания, что полностью или большей частью аннулирует выигрыш, полученный от повышения теплопроводности.
Более конкретно оксиды алюминия γ-Al2O3 и α-Al2O3 и их гидрированные производные (Al(ОН)3, AlOOH) в том, что касается их промышленной доступности, их очень низкой токсичности и возможности получать наночастицы во многих формах, были особенно изучены, т.к. для материала типа оксида они обладают хорошей теплопроводностью (40 m-1K-1 для α-Al2O3).
Гидрированные формы оксида алюминия имеют значительно более низкую теплопроводность.
Влияние формы и размера частиц оксида алюминия на улучшение теплопроводности воды изучалось, в частности, Тимофеевой и др. в «Particle shape effects on thermophysical properties of alumina nanofluids», Journal of Applied Physics 106, 014304 (2009).
Выводы из этой статьи заключаются в том, что частицы оксида алюминия в форме бляшки меньше всего повышают теплопроводность текучего теплоносителя, который содержит оксид алюминия, по сравнению с оксидом алюминия в форме пластинки, плитки или цилиндра, и что оксид алюминия в форме бляшек, кроме того, является оксидом алюминия, который больше всего повышает вязкость текучего теплоносителя, в котором он содержится, также по сравнению с химически равноценными оксидами алюминия в форме пластинки, плитки или цилиндра.
Таким образом, из наночастиц оксида алюминия, которые можно использовать в качестве добавки в текучий теплоноситель, те, которые имеют форму бляшек, т.е. наименьшим размером которых является толщина, являются наименее пригодными, т.к. при эквивалентном массовом содержании в текучем теплоносителе они обладают наименьшей способностью к повышению теплопроводности флюида, но, напротив, существенно повышают его вязкость.
Однако в противоположность тому, что известно из этого уровня техники, изобретением предлагается текучий теплоноситель, содержащий такие частицы оксида алюминия в форме бляшек.
Таким образом, изобретением предлагается текучий теплоноситель, отличающийся тем, что состоит из водного коллоидного золя, содержащего:
1) воду и
2) до 58,8 мас.% по отношению к общей массе текучего теплоносителя частиц α-Al2O3,
- толщина которых является наименьшим размером и меньше или равна 30 нм, предпочтительно находится в диапазоне от 15 до 25 нм,
- от 90 до 95% от числа этих частиц имеют размер меньше или равный 210 нм, из которых 50% от числа имеют размер меньше или равный 160 нм.
Кроме того, предпочтительно 10% от числа этих 90-95% от числа частиц имеют размер меньше 130 нм.
Предпочтительно текучий теплоноситель по изобретению обладает вязкостью ниже 10 сП, более предпочтительно ниже 5 сП, но при этом выше 1,1 сП.
Предпочтительно текучий теплоноситель по изобретению содержит только указанные частицы α-Al2O3 и воду.
В этом случае плотность флюида предпочтительно составляет от 1,650 до 1,770, более предпочтительно 1,748.
Текучий теплоноситель по изобретению является наиболее пригодным в качестве флюида для экстренного охлаждения ядерных реакторов.
Изобретение будет более понятно и другие признаки и преимущества изобретения будут более ясны из пояснительного описания, которое приведено ниже и содержит ссылки на прилагаемую фиг.1, на которой изображены кривые повышения теплопроводности К (по отношению к К0 теплопроводности чистой воды) различных текучих теплоносителей, содержащих частицы оксида алюминия α, имеющих разные формы, в зависимости от массового содержания этих частиц оксида алюминия в водном золе.
Изобретение основано на открытии, что текучий теплоноситель, содержащий воду и частицы α-оксида алюминия (α-Al2O3) в форме бляшек и с очень точным распределением по размерам частиц, обладает улучшенными свойствами теплопроводности, которые превосходят свойства любой другой формы частиц оксида алюминия, и распределения по размерам.
Размер частиц измеряют дифференциальным светорассеянием (dls).
Таким образом, используемые в изобретении частицы оксида алюминия являются частицами в форме бляшек, т.е. имеют форму плоских частиц, толщина которых является наименьшим размером и меньше или равна 30 нм, предпочтительно составляет от 15 до 25 нм и которые имеют точное распределение по размерам:
- от 90 до 95% от числа частиц имеют размер меньше или равный 210 нм,
- 50% от числа этих 90-95% частиц имеют размер меньше или равный 160 нм. Кроме того, предпочтительно 10% от числа этих 90-95% частиц имеют размер меньше или равный 130 нм.
Кроме этого особого гранулометрического распределения используемые в изобретении наночастицы имеют размер от 300 до 60 нм.
Под размером понимают самый большой размер этих наночастиц и обычно их средний диаметр. Этот размер измеряют трансмиссионной микроскопией.
Такой текучий теплоноситель легко получить путем смешивания наночастиц оксида алюминия с водой известными специалисту технологиями.
Как показано на фиг.1, на которой изображено повышение теплопроводности К флюида, состоящего из воды и частиц оксида алюминия, по сравнению с теплопроводностью К0 одной воды в зависимости от массовой концентрации наночастиц в коллоидных дисперсиях оксида алюминия разных форм, во всех этих концентрациях лучшее повышение теплопроводности показывает коллоидная дисперсия оксида алюминия BA15PS®, выпускаемая фирмой BAIKOWSKI. В частности, при 50%-ной массовой концентрации оксида алюминия по отношению к общей массе текучего теплоносителя, состоящего из воды и оксида алюминия, повышение теплопроводности коллоидной дисперсии наночастиц оксида алюминия BA15PS® составляет 86%, тогда как при той же массовой концентрации теплопроводность коллоидной дисперсии наночастиц оксида алюминия NanoDur® X1121W, выпускаемого фирмой Alfa Aesar, повышается только на 25%.
Коллоидные дисперсии оксидов алюминия NanoDur® X1121W и NanoTek® Al-6021, выпускаемые фирмой Alfa Aesar, приводят к асимптотическому повышению теплопроводности, начиная с массовых концентраций 20%.
Все наночастицы оксида алюминия, входящие в состав этих водных коллоидных золей, представляют собой кристаллические α-оксиды алюминия.
Они имеют разную морфологию.
Они не содержат побочных фаз (главным образом, AlOOH и γ-Al2O3).
Диапазоны размера являются сравнимыми, но оксид алюминия BA15PS® является менее полидисперсным по размерам.
Морфология коллоидных дисперсий оксидов алюминия NanoDur® X1121W и NanoTek® Al-6021 является сферической, тогда как оксид алюминия BA15PS® представляет собой кристаллический α-оксид алюминия, не содержащий побочных фаз, в форме бляшек, распределение по размерам которого такое, что от 90 до 95% наночастиц имеют размер меньше или равный 210 нм, и из 90-95% наночастиц 50% имеют размер меньше или равный 160 нм, и только 10% из этих 90-95% наночастиц имеют размер меньше или равный 130 нм.
К тому же вязкость текучего теплоносителя с этим оксидом алюминия является менее высокой, как показано в следующей таблице.
Измерения проводили вискозиметром Brookfield; измерение воды, проведенное в качестве контроля при 25°С, давало величину 1,05 сП вместо теоретической 1 сП.
Таким образом, количество до 58,8% масс. наночастиц α-оксида алюминия, таких как определены в изобретении, можно вводить в текучий теплоноситель.
При этих концентрациях текучий теплоноситель остается устойчивым коллоидным водным золем, т.е. явления осаждения не наблюдается.
Специалист сможет, конечно, разводить этот коллоидный золь в случае необходимости в зависимости от требуемого уровня теплопроводности, который можно определять по кривой, изображенной на фиг.1.
Наночастицы оксида алюминия, используемые по изобретению, должны иметь форму бляшек и могут иметь очень разные формы: V, Y и даже X.
Для лучшего определения оксида алюминия, используемого в изобретении, следует добавить, что эти частицы оксида алюминия состоят на 100% из α-оксида алюминия, имеющего точку плавления 2045°С, точку кипения 2980°С и плотность 3,965, поэтому лучший текучий теплоноситель по изобретению, который содержит 58,8% масс. по отношению к общей массе текучего теплоносителя таких оксидов алюминия с плотностью, если текучим теплоносителем является вода, которая должна находиться в диапазоне от 1,650 до 1,760. Более предпочтительно плотность составляет 1,748.
Превосходные тепловые характеристики текучего теплоносителя по изобретению имеют, тем не менее, недостаток: они очень абразивны.
Поэтому их следует предпочтительно применять в системах охлаждения, которые не предназначены для долговременного использования.
Из этих систем аварийная система охлаждения ядерных реакторов является наиболее пригодной.
Действительно, в системе аварийного охлаждения ядерных реакторов требуется очень быстрое охлаждение активной зоны реактора при случайном перегреве.
Так, при этом применении, когда не предполагается повторный пуск станции, абразивный характер текучего теплоносителя по изобретению не имеет значения, т.к. главной его способностью является максимальное рассеивание тепла с наименее возможным количеством вещества.
Цель текучего теплоносителя по изобретению заключается в том, чтобы избежать плавления топливных стержней и рассеивания радиоактивных веществ.
Текучий теплоноситель по изобретению, таким образом, совершенно пригоден для применения такого типа.
название | год | авторы | номер документа |
---|---|---|---|
ИНКАПСУЛИРУЮЩАЯ БАРЬЕРНАЯ МНОГОСЛОЙНАЯ СТРУКТУРА | 2012 |
|
RU2618824C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМООКСИДНОЙ НАНОКЕРАМИКИ | 2009 |
|
RU2402506C1 |
СПЕЧЕННЫЙ МАТЕРИАЛ НА ОСНОВЕ α - ОКСИДА АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА | 1990 |
|
RU2021225C1 |
НАНОКРИСТАЛЛИЧЕСКИЕ СПЕЧЕННЫЕ ТЕЛА НА ОСНОВЕ АЛЬФА-ОКСИДА АЛЮМИНИЯ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ, А ТАКЖЕ ПРИМЕНЕНИЕ | 2006 |
|
RU2383638C2 |
ПРИМЕНЕНИЕ ПОЛИМЕРНО-НЕОРГАНИЧЕСКИХ КОМПОЗИЦИЙ В ВИДЕ НАНОЧАСТИЦ В КАЧЕСТВЕ ЖИДКОСТЕЙ-ТЕПЛОНОСИТЕЛЕЙ В АККУМУЛЯТОРНОЙ БАТАРЕЕ ИЛИ ДРУГИХ СИСТЕМАХ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ | 2020 |
|
RU2825089C2 |
СОДЕРЖАЩИЕ РОДИЙ КАТАЛИЗАТОРЫ ДЛЯ ОБРАБОТКИ АВТОМОБИЛЬНЫХ ВЫХЛОПОВ | 2016 |
|
RU2730496C2 |
ДИЗЕЛЬНЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ, СОДЕРЖАЩИЙ НАНОЧАСТИЦЫ МЕТАЛЛА ПЛАТИНОВОЙ ГРУППЫ | 2017 |
|
RU2742416C2 |
КАТАЛИТИЧЕСКИЕ ИЗДЕЛИЯ | 2016 |
|
RU2730851C1 |
КАТАЛИТИЧЕСКИЕ ИЗДЕЛИЯ | 2016 |
|
RU2731562C1 |
ОХЛАЖДАЮЩИЕ КОМПОЗИЦИИ | 2012 |
|
RU2604232C2 |
Изобретение относится к текучему теплоносителю и его применению. Текучий теплоноситель по изобретению состоит из коллоидного водного золя, содержащего воду и до 58,8 мас.% по отношению к общей массе текучего теплоносителя частиц α-Al2O3 в форме бляшек. Толщина указанных частиц α-Al2O3 является наименьшим размером и составляет от 15 до 25 нм. От 90 до 95% частиц α-Al2O3 имеют размер меньше или равный 210 нм, из которых 50% имеют размер меньше или равный 160 нм. Предложенный теплоноситель предназначен для охлаждения, в частности аварийного охлаждения ядерных реакторов. 2 н. и 8 з.п. ф-лы, 1 ил., 1 табл.
1. Текучий теплоноситель, отличающийся тем, что состоит из коллоидного водного золя, содержащего:
1) воду и
2) до 58,8 мас.% по отношению к общей массе текучего теплоносителя частиц α-Al2O3,
которые имеют форму бляшек,
толщина которых является наименьшим размером и составляет от 15 до 25 нм,
от 90 до 95% от числа этих частиц имеют размер меньше или равный 210 нм, из которых 50% от числа имеют размер меньше или равный 160 нм.
2. Текучий теплоноситель по п. 1, отличающийся тем, что, кроме того, 10% от числа этих 90-95% от числа частиц, имеющих размер меньше или равный 210 нм, имеют размер меньше 130 нм.
3. Текучий теплоноситель по п. 1, отличающийся тем, что содержит только указанные частицы α-Al2O3 и воду.
4. Текучий теплоноситель по п. 1 или 2, отличающийся тем, что его плотность составляет от 1,650 до 1,770.
5. Текучий теплоноситель по любому из пп. 1-3, отличающийся тем, что его плотность составляет 1,748.
6. Текучий теплоноситель по п. 4, отличающийся тем, что его плотность составляет 1,748.
7. Текучий теплоноситель по любому из пп. 1-3 и 6, отличающийся тем, что его вязкость ниже 10 сП, предпочтительно ниже 5 сП.
8. Текучий теплоноситель по п. 4, отличающийся тем, что его вязкость ниже 10 сП, предпочтительно ниже 5 сП.
9. Текучий теплоноситель по п. 5, отличающийся тем, что его вязкость ниже 10 сП, предпочтительно ниже 5 сП.
10. Применение текучего теплоносителя по любому из пп. 1-9 для аварийного охлаждения ядерных реакторов.
US 2008212733 A1, 04.09.2008 | |||
TIMOFEEVA E | |||
et al | |||
Particle shape effects on thermophysical properties of alumina nanofluids | |||
Journal of Applied Physics, American Institute of Physics | |||
New-York, 06.07.2009, v.106, N1, c.14304; | |||
ЖИДКОТЕКУЧАЯ СРЕДА, СОДЕРЖАЩАЯ ДИСПЕРГИРОВАННЫЕ НАНОЧАСТИЦЫ МЕТАЛЛОВ И ПОДОБНЫХ МАТЕРИАЛОВ | 2004 |
|
RU2291889C2 |
ЖИДКИЙ ТЕПЛОНОСИТЕЛЬ, СОДЕРЖАЩИЙ НАНОЧАСТИЦЫ И КАРБОКСИЛАТЫ | 2001 |
|
RU2265039C2 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Авторы
Даты
2015-07-27—Публикация
2010-11-30—Подача