Изобретение относится к авиадвигателестроению.
Противообледенительная система (ПОС) газотурбинного двигателя (ГТД) предназначена для сведения к минимуму влияния метеорологических условий, вызывающих обледенение двигателя, на безопасность и регулярность полетов.
Известна противообледенительная система газотурбинного двигателя, содержащая теплообменник, установленный в проточной части двигателя, через который воздух, отбираемый за последней ступенью компрессора, подается в систему охлаждения турбины, теплообменник установлен перед входом в компрессор (патент US 2812897 А, МПК F02C 7/047, 1957).
Известны системы охлаждения газовых турбин, в которых используют воздух, отбираемый от компрессора двигателя (Теория авиационных двигателей. Под ред. П.К. Казанджана. - М.: Машиностроение, 1983, с. 189, рис. 1.11). Их эффективность при степенях повышения давления воздуха в компрессоре более 25 снижается из-за роста температуры охлаждающего воздуха (там же, с. 196, рис. 11.10).
Известна система защиты газотурбинного двигателя от попадания посторонних предметов, в которой используется защитная сетка, установленная на входе в компрессор двигателя. Система установлена на самолете Су-27. Недостатком системы является высокая вероятность обледенения сетки, что делает ее использование небезопасным.
Целью изобретения является повышение безопасности эксплуатации ГТД, их газодинамической эффективности.
Поставленная цель достигается тем, что в проточной части ГТД перед входом в компрессор, степень повышения давления которого более 25, установлен теплообменник, через который воздух, отбираемый за последней ступенью компрессора, подается в систему охлаждения турбины. Для исключения возможности появления отрицательных температур на входе в двигатель при температурах наружного воздуха от плюс 5 до минус 25°С, при которых возможно обледенение, расход воздуха, отбираемого от компрессора, составляет δ=(0,05÷0,08)·(1+m), где δ - доля отбираемого воздуха; m - степень двухконтурности ГТД.
Сущность изобретения заключается в том, что тепловая энергия воздуха, отбираемого от высоконапорного компрессора, в количествах, указанных выше, используется (достаточна) для защиты двигателя от обледенения, а хладоресурс, поступающего в двигатель воздуха, - для дополнительного охлаждения турбины.
Дополнительно:
для защиты двигателя от попадания посторонних предметов между теплообменником и входом в компрессор установлена защитная сетка;
для регулирования (в зависимости от температуры наружного воздуха) расхода воздуха, отбираемого от компрессора, в магистрали его подачи установлен регулятор расхода воздуха.
На фиг. 1 изображен двухконтурный ГТД, оборудованный ПОС;
на фиг. 2 показаны температуры газа перед турбиной и подогревы воздуха в теплообменнике для ГТД с различными степенями повышения давления в компрессоре.
В канале двухконтурного ГТД (фиг. 1) на входе в компрессор установлен теплообменник 1. Через теплообменник 1 проходит воздух, отбираемый за последней ступенью компрессора, который подается в систему охлаждения турбины. В магистрали подачи воздуха от компрессора до теплообменника установлен регулятор расхода воздуха 2. Между теплообменником 1 и входом в компрессор установлена защитная сетка 3.
Работа ПОС осуществляется следующим образом. Воздух сжимается в компрессоре, степень повышения давления которого более 25, нагревается. Часть воздуха δ=(0,05÷0,08)·(1+m), где m - степень двухконтурности ГТД, поступает в теплообменник 1. В результате теплообмена воздух, поступающий в компрессор, нагревается до температуры, при которой обледенение двигателя (сетки) не наступает, а воздух, поступающий из теплообменника в систему охлаждения турбины, охлаждается. Величина относительного расхода воздуха δ изменяется в пределах, указанных выше, в зависимости от температуры наружного воздуха при помощи регулятора 2.
При положительных температурах наружного воздуха необходимость в защите двигателя (сетки) от обледенения отпадает. В этом случае регулятор расхода воздуха 2 устанавливается на минимальный расход воздуха δ, при котором обеспечивается потребное охлаждение турбины.
На фиг. 2 представлены результаты оценки эффективности ПОС. Оценка выполнена с использованием коэффициентов интенсивности охлаждения воздуха в теплообменнике υ1 и лопаток в турбине υ2, представляющими собой: а) отношение разности температур воздуха за компрессором и на входе в систему охлаждения турбины к перепаду температур воздуха между выходом из компрессора и входом в двигатель; б) отношение разности температур газа и лопатки турбины к перепаду температур между температурой газа перед турбиной и температурой воздуха на входе в систему охлаждения турбины (Теория авиационных двигателей. Под ред. П.К. Казанджана. - М.: Машиностроение, 1983, с. 193).
Исходные данные: температура лопаток турбины Тл=1100 К; коэффициент интенсивности охлаждения воздуха в теплообменнике υ1=0,5; коэффициент интенсивности охлаждения лопаток в турбине υ2=0,6÷0,65; относительный расход воздуха δ=(0,05÷0,08)·(1+m); степень повышения давления в компрессоре πк=20÷40.
Из фиг. 2 видно, что применение ПОС (при заданных коэффициентах интенсивности охлаждения) обеспечивает подогрев воздуха ΔТтеп на входе в двигатель, при котором обледенение двигателя (сетки) не наступает (при температурах наружного воздуха, больших минус 25°С, и πк, больших 25, температура воздуха на входе в двигатель остается положительной). Также видно, что применение ПОС позволяет повысить температуру газа перед турбиной Тг* более чем на 20% по отношению к охлаждению, при котором воздух, отбираемый от компрессора, подается в турбину непосредственно (без теплообменника).
Применение ПОС позволяет повысить безопасность эксплуатации ГТД за счет исключения попадания льда в двигатель, а с сеткой - и других посторонних предметов.
Применение ПОС позволяет повысить эффективность ГТД как тепловой машины за счет повышения температуры газа перед турбиной до 2000 К и более как следствие охлаждения лопаток турбины более холодным воздухом.
Применение ПОС позволяет улучшить тяговые и расходные характеристики ГТД при температурах наружного воздуха менее минус 15°С за счет оптимизации программы регулирования двигателя (отпадает необходимость использования ограничителя приведенных оборотов, который снижает физическую частоту вращения турбокомпрессора).
Наибольший эффект от применения ПОС (δ<0,16) достигается на двигателях со степенями двухконтурности менее единицы.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОХЛАЖДЕНИЯ ТУРБИНЫ | 2009 |
|
RU2423617C2 |
СПОСОБ ОХЛАЖДЕНИЯ ТУРБИННЫХ ЛОПАТОК ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2009 |
|
RU2409745C1 |
СПОСОБ ОХЛАЖДЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2013 |
|
RU2529989C1 |
ПАРОТУРБИННЫЙ ДВИГАТЕЛЬ | 2005 |
|
RU2285131C1 |
ТРЕХКОНТУРНЫЙ ТУРБОЭЖЕКТОРНЫЙ ДВИГАТЕЛЬ | 2009 |
|
RU2392475C1 |
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННЫХ УСТАНОВОК | 2005 |
|
RU2284418C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ОСЕВОГО КОМПРЕССОРА В СИСТЕМЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2013 |
|
RU2535186C1 |
ВОЗДУХО-ВОЗДУШНЫЙ РАДИАТОР И СПОСОБ ПОВЫШЕНИЯ ЕГО ЭФФЕКТИВНОСТИ | 2016 |
|
RU2632561C2 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2005 |
|
RU2287708C1 |
ГИПЕРЗВУКОВОЙ ТУРБОЭЖЕКТОРНЫЙ ДВИГАТЕЛЬ | 2009 |
|
RU2386829C1 |
Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения давления в компрессоре более 25, а расход воздуха, отбираемого от компрессора, составляет δ=(0,05÷0,07)·(1+m), где δ - доля отбираемого от компрессора воздуха; m - степень двухконтурности двигателя. Между теплообменником и компрессором установлена защитная сетка. Противообледенительная система защищает двигатель от попадания льда и других посторонних предметов, улучшает тяговые и расходные характеристики двигателя. 3 з.п. ф-лы, 2 ил.
1. Противообледенительная система газотурбинного двигателя, содержащая теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя, в которой воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины, отличающаяся тем, что степень повышения давления в компрессоре более 25, а расход воздуха, отбираемого от компрессора, составляет δ=(0,05÷0,07)·(1+m), где δ - доля отбираемого от компрессора воздуха; m - степень двухконтурности двигателя.
2. Противообледенительная система газотурбинного двигателя по п. 1, отличающаяся тем, что между теплообменником и входом в компрессор установлена защитная сетка.
3. Противообледенительная система газотурбинного двигателя по п. 1, отличающаяся тем, что в магистрали подачи воздуха установлен регулятор расхода воздуха.
4. Противообледенительная система газотурбинного двигателя по п. 1, отличающаяся тем, что степень двухконтурности двигателя менее единицы.
Способ снижения концентрации токсических элементов Al, As, Pb, Cd, Sn в мышечной ткани рыб | 2023 |
|
RU2812897C1 |
А.А | |||
Иноземцев и др., Основы конструирования авиационных двигателей и энергетических установок, Москва, "Машиностроение", 2008, Том 1, с | |||
Прибор для массовой выработки лекал | 1921 |
|
SU118A1 |
US 5423174 A, 13.06.1995 | |||
Иодидный способ рафинирования кремния и других элементов | 1955 |
|
SU127408A1 |
Авторы
Даты
2015-07-27—Публикация
2013-12-30—Подача