СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ДЕЙТЕРИЯ В ВОДЕ И ВОДНЫХ РАСТВОРАХ Российский патент 2015 года по МПК G01N33/18 G01N24/08 

Описание патента на изобретение RU2558433C1

Предлагаемое изобретение относится к методам анализа количественного определения содержания изотопа дейтерия в жидких биологических материалах, в частности в воде, водных растворах, спиртсодержащих напитках и т.п. с использованием методов ядерного магнитного резонанса (ЯМР), т.е. при изотопном анализе водосодержащих жидкостей и может найти применение: при экологическом мониторинге природных, промышленных и питьевых вод; в медицинских целях при исследовании концентрации дейтерия в биологических жидкостях, например, в плазме крови человека; при установлении подлинности алкогольной продукции и напитков и проч.

Водород, входящий в состав жидких биологических материалов, в частности воды, имеет два стабильных изотопа: протий 1Н и дейтерий 2D. В зависимости от природы происхождения и целевого применения воды, изотопное соотношение дейтерия к протию 2D/1Н в ней может варьироваться в широком диапазоне значений. Например, 2D/1Н в природной воде изменяется от 89.09 ppm (стандарт VSMOW (Vienna Standard Mean Ocean Water) до 155.76 ppm (стандарт SLAP (Standard Light Antarctic Precipitation)). Актуальной задачей с точки зрения определения изотопного состава жидкостей, в частности воды, является исследование низких концентраций изотопов, т.к. именно для низких концентраций нет достоверных и быстрых методов анализа.

Известно, что в воде с пониженным содержанием дейтерия изменяется скорость протекания химических реакций, сольватация ионов, их подвижность и т.д. Легкая вода (вода в с пониженным относительно природного содержанием дейтерия) оказывает стимулирующее действие на живые системы, существенно повышает их активность, жизнестойкость к различным негативным факторам, репродуктивную деятельность, улучшает и ускоряет обмен веществ. Реакция биосистем при воздействии на них воды может изменяться в зависимости от количественных и качественных изменений изотопного состава воды. Применение воды с повышенной концентрацией тяжелых изотопов, в частности дейтерия, вызывает выраженные токсические эффекты на уровне организма, ограничивая возможность ее использования в лечебно-профилактических целях [Kushner D.J., Baker P., Dunstall T.G., Can. J. Physiol. Pharmacol. 1999, Feb. 77(2):79-88]. В то же время на разных объектах зарегистрирована положительная биологическая активность вод, полученных с помощью различных технологических процессов, относящихся к категории изотопно-легких, со сниженной в той или иной мере по сравнению с исходной концентрацией дейтерия. Т.е. количественные и качественные показатели изотопного состава воды существенным образом отражаются на ее эффективности при использовании в качестве растворителя или ингредиента. Поэтому очевидна необходимость в разработке эффективных, точных (прецизионных), не требующих большого количества времени методов количественного анализа на содержание дейтерия в жидкостях.

В настоящее время существует ряд способов определения количественного содержания дейтерия в водосодержащих жидкостях. Они основаны на различных физико-химических методах исследования таких как: масс-спектрометрия изотопных соотношений, инфракрасная спектрометрия, газовая хроматография и др. Однако каждый из них имеет свои недостатки: сложность пробоподготовки, недостаточная точность, высокая стоимость анализа за счет потребности большого количества расходных материалов и другие. Уровень техники известных способов анализа жидкостей на содержание дейтерия в низких концентрациях может быть представлен рядом патентов: SU 1340334, US 4066404, US 3208826, US 5042488, US 20100315083, US 20090114809 и др.

Наиболее близким техническим решением к заявляемому может быть принят патент SU 1340334, опубликованный 30.05.1988, бюллетень №20. Согласно прототипу способ определения содержания дейтерия в воде, включает облучение исследуемой пробы потоком ионизирующего излучения и измерения наведенной активности аналитического радионуклида, при этом для приготовления исследуемой пробы образец воды обрабатывают окисью щелочноземельного металла, фильтруют и высушивают образовавшуюся гидроокись, а облучение ее проводят потоком тяжелых ионов.

Недостатками данного способа являются: ограниченная возможность его применения из-за использования радиоактивных изотопов, недостаточно высокая чувствительность, приводящая к невозможности производить измерение дейтерия в концентрациях природного уровня и ниже с высокой точностью, сложная пробоподготовка и длительное время для получения результатов анализа.

Технической задачей заявляемого решения является: получение возможности определения концентраций дейтерия с высокой точностью, в том числе и для сверхнизких концентраций, относительная доступность способа, требующая только наличия спектрометра ядерно-магнитного резонанса (ЯМР) и сокращение времени требуемого для получения результатов анализа.

Для решения технической задачи предлагается способ определения количественного содержания дейтерия в воде и водных растворах, состоящий в воздействии излучения на исследуемую пробу. При этом воздействие производят в постоянном магнитном поле спектрометра ядерного магнитного резонанса (ЯМР) электромагнитным излучением радиочастотного диапазона. Для этого исследуемое вещество помещают в ампулу для ЯМР. Затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента и воды с известным содержанием дейтерия. Эту систему ампул - ампулу с исследуемой пробой и помещенным в нее эталоном, опускают в спектрометр ЯМР и записывают спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса за счет использования лантаноидного сдвигающего реагента пики исследуемого и эталонного образцов, измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце. В качестве лантаноидного сдвигающего реагента используют трифторметансульфонат ервопия(III) ((Eu(CF3SO3)3), который способен индуцировать парамагнитный химический сдвиг ЯМР сигнала.

Т.е. для определения концентрации дейтерия используют метод ядерного магнитного резонанса (ЯМР), при котором способ включает съемку спектров ЯМР исследуемого вещества, содержащегося в ампуле, и ампулы меньшего диаметра с эталонным образцом, вставленной в нее, с последующим определением в полученном спектре соотношения интегральных интенсивностей ЯМР сигналов исследуемого образца и эталонного, при этом внутренняя ампула меньшего диаметра содержит эталонный образец воды с точно известным изотопным составом и растворенным в этой воде лантаноидным сдвигающим реагентом.

Пример реализации способа

Для проведения анализа был взят образец воды и набран в микропипетку. Из микропипетки в ампулу налили 600 мкл исследуемого образца. В эту же ампулу поместили запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента - трифторметансульфонат ервопия(III) ((Eu(CF3SO3)3) с молярной концентрацией Eu3+, равной 0.05±0.01 моль/л, и воды с концентрацией дейтерия 100 ppm. Ампулу погрузили в постоянное магнитное поле ЯМР спектрометра марки JEOL JNM-ECA 400 MHz, где она облучалась электромагнитным излучением радиочастотного диапазона, частота которого соответствует ядерному магнитному резонансу дейтерия для индукции магнитного поля 9 Тл. Спектр ЯМР регистрировали в течение 20 минут. В полученном спектре наблюдали два пика, представленных на рис.1.

Пик «а» (рис.1) соответствовал дейтерию воды эталонного образца, пик «б» - дейтерию воды исследуемого образца. Измерили интегральную интенсивность (площадь под пиком) каждого пика. Сравнили полученные значения и получили концентрацию дейтерия в исследуемом образце равной 150±2 ppm, что соответствует артезианской воде в г. Краснодаре.

Используемый эталонный образец остается неизменным и может применяться многократно для различных испытуемых объектов.

Таким образом, способ количественного определения изотопного состава жидких сред на ЯМР с применением лантаноидных сдвигающих реагентов обеспечивает высокую точность результатов, в том числе и при сверхнизких концентрациях дейтерия, он универсален, т.к. может быть применен, кроме воды, для различных водосодержащих жидкостей, обеспечивает экспрессность, имеет относительно невысокую стоимость проведения эксперимента и сравнительно доступен.

Похожие патенты RU2558433C1

название год авторы номер документа
Способ определения количественного содержания компонент в исследуемых смесях с помощью обработки данных, полученных методом ядерного магнитного резонанса при экспресс-контроле их состояния 2020
  • Мязин Никита Сергеевич
  • Давыдов Вадим Владимирович
RU2740171C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ТРАНСФОРМАТОРНЫХ МАСЕЛ МЕТОДОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА С СЕЛЕКТИВНЫМИ ИМПУЛЬСАМИ 2022
  • Козлов Владимир Константинович
  • Куракина Ольга Евгеньевна
  • Туранова Ольга Алексеевна
  • Туранов Александр Николаевич
RU2782973C1
Способ полной корреляционной спектроскопии ЯМР со смешиванием спинов ядер в ультраслабом магнитном поле 2020
  • Кирютин Алексей Сергеевич
  • Гришин Юрий Акимович
  • Жуков Иван Владимирович
  • Иванов Константин Львович
  • Юрковская Александра Вадимовна
RU2746064C1
СПОСОБ НЕИНВАЗИВНОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ ПО ИХ СПЕКТРАМ ЯМР И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Анисимов Николай Викторович
  • Агафонникова Анастасия Геннадиевна
RU2691659C1
ОДНОВРЕМЕННОЕ КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ГЛИЦЕРИНА И АЦЕТАТА КАЛИЯ В ВОДНОМ РАСТВОРЕ МЕТОДОМ Н ЯМР СПЕКТРОСКОПИИ 2018
  • Абрамов Юрий Валентинович
  • Шейченко Владимир Иванович
  • Блинова Галина Игоревна
RU2690186C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МАССЫ УГЛЕРОДНЫХ НАНОСТРУКТУР В ОБРАЗЦАХ 2018
  • Анциферова Анна Александровна
  • Бузулуков Юрий Петрович
  • Гусев Александр Анатольевич
  • Демин Владимир Федорович
  • Кашкаров Павел Константинович
  • Фатхутдинова Лилия Минвагизовна
RU2698718C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТРУКТУРНОГО СОСТОЯНИЯ ВОДЫ 2005
  • Гончарук Владислав Владимирович
  • Смирнов Александр Николаевич
  • Сыроешкин Антон Владимирович
  • Плетенев Сергей Сергеевич
  • Лапшин Владимир Борисович
  • Самсони-Тодоров Александр Олегович
  • Маляренко Валентин Владимирович
RU2346263C2
СПОСОБ ПОЛУЧЕНИЯ ВОДЫ С ПОНИЖЕННЫМ СОДЕРЖАНИЕМ ДЕЙТЕРИЯ 2013
  • Фролов Владимир Юрьевич
  • Барышев Михаил Геннадьевич
  • Джимак Степан Сергеевич
  • Ломакина Лариса Владимировна
  • Болотин Сергей Николаевич
  • Петриев Илья Сергеевич
RU2521627C1
Способ исследования органических соединений 1988
  • Корнилов Михаил Юрьевич
  • Комаров Игорь Владимирович
  • Туров Александр Всеволодович
SU1562813A1
СЕНСОРНЫЙ ЛЮМИНЕСЦИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ В ИССЛЕДУЕМОЙ ЖИДКОСТИ 2018
  • Белоусов Юрий Александрович
  • Гончаренко Виктория Евгеньевна
  • Дроздов Евгений Анатольевич
  • Тайдаков Илья Викторович
  • Лобанов Андрей Николаевич
RU2703227C1

Иллюстрации к изобретению RU 2 558 433 C1

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ДЕЙТЕРИЯ В ВОДЕ И ВОДНЫХ РАСТВОРАХ

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса. Воздействие на исследуемую пробу производят электромагнитным излучением радиочастотного диапазона в постоянном магнитном поле спектрометра ядерного магнитного резонанса для чего исследуемое вещество помещают в ампулу, затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор лантаноидного сдвигающего реагента и воды с известным содержанием дейтерия, после чего эту систему ампул опускают в спектрометр ядерного магнитного резонанса и регистрируют спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса пики исследуемого и эталонного образцов, затем измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце. В качестве лантаноидного сдвигающего реагента используют трифторметансульфонат европия(III) ((Eu(CF3SO3)3), который способен индуцировать парамагнитный химический сдвиг сигнала ядерного магнитного резонанса. Достигается повышение точности и чувствительности, а также упрощение и ускорение анализа. 1 пр., 1 ил.

Формула изобретения RU 2 558 433 C1

Способ определения количественного содержания дейтерия в воде и водных растворах включающий воздействие излучения на исследуемую пробу, отличающийся тем, что воздействие производят электромагнитным излучением радиочастотного диапазона в постоянном магнитном поле спектрометра ядерного магнитного резонанса, для чего исследуемое вещество помещают в ампулу, затем в эту ампулу вставляют эталонный образец, представляющий собой запаянную ампулу меньшего диаметра, содержащую водный раствор трифторметансульфонат европия (III) Eu(CF3SO3)3, который способен индуцировать парамагнитный химический сдвиг сигнала ядерного магнитного резонанса, и воды с известным содержанием дейтерия, после чего эту систему ампул опускают в спектрометр ядерного магнитного резонанса и регистрируют спектр на ядрах дейтерия, в котором наблюдают разнесенные по частоте резонанса пики исследуемого и эталонного образцов, измеряют интегральную интенсивность каждого пика, сопоставляют их значения и методом пропорции определяют концентрацию дейтерия в исследуемом образце.

Документы, цитированные в отчете о поиске Патент 2015 года RU2558433C1

Способ определения содержания дейтерия в воде 1986
  • Рыжков В.А.
  • Обливанцев А.Н.
  • Рыбасов А.Г.
SU1340334A1
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ КОМПОНЕНТОВ И ОТДЕЛЬНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ИХ СМЕСЯХ 2009
  • Кашаев Рустем Султанхамитович
  • Темников Алексей Николаевич
  • Идиятуллин Замил Шаукатович
  • Газизов Эдуард Гамисович
RU2411508C1
СПОСОБ КОЛИЧЕСТВЕННОГО АНАЛИЗА ВЕЩЕСТВА 1996
  • Темников Алексей Николаевич
  • Темников Дмитрий Алексеевич
RU2111479C1
Способ исследования органических соединений 1988
  • Корнилов Михаил Юрьевич
  • Комаров Игорь Владимирович
  • Туров Александр Всеволодович
SU1562813A1
Способ измерения флюенса нейтронов 1988
  • Андреев В.Н.
  • Давыдов А.В.
SU1538716A1
Способ уменьшения затухания воздушных телефонных цепей 1944
  • Тихомиров П.Л.
SU81942A1
US 4066404 A, 03.01.1978
US 4766081 A, 23.08.1988
JP 2006070007 A, 16.03.2006.

RU 2 558 433 C1

Авторы

Барышев Михаил Геннадьевич

Кашаев Денис Владимирович

Джимак Степан Сергеевич

Ломакина Лариса Владимировна

Соколов Михаил Евгеньевич

Шлапаков Михаил Сергеевич

Даты

2015-08-10Публикация

2014-02-17Подача