СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКИХ ПЛЕНОК Российский патент 2015 года по МПК G01B11/06 

Описание патента на изобретение RU2558645C1

Изобретение относится к измерительной технике, в частности к способам оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения толщины и качества тонких металлических пленок, используемых в микроэлектронике.

Известен способ контроля состава материала при формировании структуры (V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, YU.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev «HgCdTe epilayers on GaAs: growth and devices», Opto-electronics review, 11, no. 2, 2003, p.99-111), заключающийся в том, что в процессе формирования слоя осуществляют измерение в непрерывном режиме эллипсометрических параметров Δ и ψ, по результатам измерения эллипсометрических параметров определяют оптические постоянные и, следовательно, состав материала слоя и его толщину. Контроль возможен благодаря зависимости оптических постоянных от состава материала.

Известный способ является сложным и трудоемким.

Кроме того, известен способ определения толщины тонких пленок в процессе формирования структуры слоя путем измерения эллипсометрических параметров Δ и ψ с последующим вычислением производной, при этом в качестве функции выбирают один из эллипсометрических параметров, а в качестве аргумента - другой эллипсометрический параметр, результаты вычисления фиксируют в плоскости производная эллипсометрического параметра-эллипсометрический параметр в виде кривой, по которой определяют оптические постоянные, изменение состава материала слоя, а также его толщину (патент RU 2396545, МКИ G01N 21/17, 2010 год).

Известный способ также является сложным и трудоемким, кроме того, существует большая вероятность получения ошибочных результатов, обусловленная наличием сложных математических операций.

Задачей настоящего изобретения является устранение вышеуказанных недостатков.

Техническим результатом предлагаемого изобретения является обеспечение простоты и надежности способа, а также обеспечение точности определения толщины и качества металлических пленок.

Указанный технический результат достигается тем, что способ контроля состава материала при формировании структуры заключается в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ. Предварительно определяют эллипсометрическим методом с использованием лазерного эллипсометра с длиной волны 0,6328 мкм показатель преломления прозрачной подложки n1 с обратной матовой поверхностью. На полированные поверхности прозрачных подложек наносят металлические пленки, освещают подложки лучом лазера со стороны нанесенной пленки, отбирая образцы, пропускающие луч лазера, на лазерном эллипсометре с длиной волны 0,6328 мкм измеряют эллипсометрические параметры Δ и ψ пленки, не пропускающей луч лазера, рассчитывают для нее с использованием программно-аппаратного средства, связанного с эллипсометром, оптические константы пленки - показателя преломления n и коэффициента экстинкции k и формируют эталонную зависимость в виде функции Δ=f(ψ) с использованием n1 и показателя преломления пленки n и коэффициента экстинкции k. Экспериментально определяют эллипсометрические параметры Δэксп и ψэксп для полупрозрачных пленок, пропускающих луч лазера, результаты экспериментальных значений фиксируют в плоскости для соотнесения с эталонной зависимостью Δ=f(ψ).

Сущность настоящего изобретения поясняется следующими иллюстрациями:

фиг.1 - отображает график эталонной зависимости Δ=f(ψ) в диапазоне толщин пленок титана от 20 до 800 Å;

фиг.2 - отображает график эталонной зависимости Δ=f(ψ) в диапазоне толщин пленок титана 300-500 Å;

фиг.3 - отображает график эталонной зависимости Δ=f(ψ) в диапазоне толщин пленок титана 500-800 Å;

фиг.4 - отображает график эталонной зависимости Δ=f(ψ) и экспериментальные значения.

Способ реализуется следующим образом.

1. Предварительно определяют эллипсометрическим методом при использовании лазерных эллипсометров с длиной волны 0,6328 мкм типа ЛЭМ-2 или L116S300 STOKES ELLIPSOMETER показатель преломления n1 прозрачной подложки (стекло, кварц или сапфир) с обратной матовой поверхностью.

2. На полированную поверхность прозрачной подложки с обратной матовой поверхностью наносят толстую (более 0,1 мкм) металлическую пленку. Освещают подложку лазерным лучом со стороны нанесенной пленки и, наблюдая матовую поверхность подложки, убеждаются, что металлическая пленка не пропускает луч лазера.

3. На лазерном эллипсометре с длиной волны 0,6328 мкм, освещая лучом лазера пленку, измеряют эллипсометрические параметры Δ и ψ указанной пленки и рассчитывают оптические константы пленки - показатель преломления n2 и коэффициент экстинкции k2.

4. Для полученных величин n1, n2, k2, используя имеющуюся программу, рассчитывают эллипсометрические параметры ψ и Δ для пленок разной толщины и строят эталонную зависимость Δ=f(ψ) (см. фиг.1 - сплошная линия). Компьютер, содержащий программно-аппаратный комплекс, соединен с эллипсометром.

5. Для полупрозрачных пленок с разной толщиной определяют экспериментальные эллипсометрические параметры Δэксп и ψэкс и наносят эти экспериментальные значения на плоскость Δ - ψ.

6. Если параметры Δэксп и ψэксп точно совпадают с зависимостью Δ=f(ψ), то точно определяют толщину тонкой пленки и делают вывод о том, что оптические параметры тонкой пленки совпадают с оптическими параметрами толстой пленки.

7. Если параметры полупрозрачной пленки (ψэксп, Δэксп) отклоняются от эталонной зависимости Δ=f(ψ), то по величине этого отклонения судят о свойствах тонкой металлической пленки: чем больше отклонение экспериментальных значений Δэксп и ψэксп от кривой Δ=f(ψ), тем по оценке приведенного метода качество тонкой металлической пленки отличается от качества толстой металлической пленки.

8. При вышеуказанных действиях возможно точно измерять толщину полупрозрачных пленок. Ее ориентировочную величину можно оценить по ближайшим точкам эталонной зависимости Δ=f(ψ).

На фиг.1 представлен график эталонной зависимости Δ=f(ψ) в диапазоне толщин пленок титана от 20 до 800 Å. На фиг.2 представлены графики эталонной зависимости Δ=f(ψ) более детально в диапазоне толщин пленок титана 300-500 Å и 500-800 Å.

На фиг.4 на кривой эталонной зависимости Δ=f(ψ) кружочками обозначены теоретически рассчитанные толщины пленок титана, а крестиками обозначены измеренные экспериментально величины (ψэсп, Δэксп). Видно, что для образцов №1, №2 и №3 экспериментальные значения хорошо совпадают с эталонными значениями (при этом можно определить с точностью до 5 Å и толщины этих пленок); тогда как для образца №4 существует расхождение между рассчитанными по кривой Δ=f(ψ) и измеренными ψэксп и Δэксп параметрами. В этом случае толщину пленки на этом образце можно оценить лишь приблизительно.

Похожие патенты RU2558645C1

название год авторы номер документа
Способ определения оптических констант пленок химически активных металлов или их сплавов 2017
  • Акашев Лев Александрович
  • Попов Николай Александрович
  • Шевченко Владимир Григорьевич
RU2659873C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ТОНКОЙ ПРОЗРАЧНОЙ ПЛЕНКИ 2011
  • Акашев Лев Александрович
  • Шевченко Владимир Григорьевич
  • Кочедыков Виктор Анатольевич
  • Попов Николай Александрович
RU2463554C1
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки 2018
  • Акашев Лев Александрович
  • Попов Николай Александрович
  • Шевченко Владимир Григорьевич
RU2683879C1
Способ определения оптической ширины запрещенной зоны наноразмерных пленок 2020
  • Акашев Лев Александрович
  • Попов Николай Александрович
  • Шевченко Владимир Григорьевич
RU2724141C1
Способ определения толщины пленки 2021
  • Филин Сергей Александрович
RU2787807C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СЛОЕВ МНОГОСЛОЙНОГО ЛЕНТОЧНОГО СВЕРХПРОВОДНИКА 2014
  • Бортнянский Арнольд Леонидович
  • Подтыкан Федор Петрович
  • Юдин Александр Михайлович
RU2584340C1
СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ СТУПЕНЕК В ПРОИЗВОЛЬНЫХ МНОГОСЛОЙНЫХ СТРУКТУРАХ 2003
  • Горнев Евгений Сергеевич
  • Лонский Эдуард Станиславович
  • Потапов Евгений Владимирович
RU2270437C2
СПОСОБ ЭЛЛИПСОМЕТРИЧЕСКОГО ИССЛЕДОВАНИЯ ТОНКИХ ПЛЕНОК НА ПЛОСКИХ ПОДЛОЖКАХ 1997
  • Никитин А.К.
RU2133956C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ОСТАТОЧНЫХ ПЛЕНОК В ОКНАХ МАЛЫХ РАЗМЕРОВ 2000
  • Лонский Э.С.
RU2193158C2
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ПЛЕНОК КРЕМНИЯ НА ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖКАХ 2000
  • Латышева Н.Д.
  • Скупов В.Д.
  • Смолин В.К.
RU2185684C2

Иллюстрации к изобретению RU 2 558 645 C1

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКИХ ПЛЕНОК

Изобретение относится к измерительной технике. Способ контроля состава материала при формировании структуры заключается в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ. Предварительно определяют эллипсометрическим методом с использованием лазерного эллипсометра с длиной волны 0,6328 мкм показатель преломления прозрачной подложки n1 с обратной матовой поверхностью. На полированные поверхности прозрачных подложек наносят металлические пленки, освещают подложки лучом лазера со стороны нанесенной пленки, отбирая образцы, пропускающие луч лазера, на лазерном эллипсометре с длиной волны 0,6328 мкм измеряют эллипсометрические параметры Δ и ψ пленки, не пропускающей луч лазера, рассчитывают для нее с использованием программно-аппаратного средства, связанного с эллипсометром, оптические константы пленки - показателя преломления n и коэффициента экстинкции k и формируют эталонную зависимость в виде функции Δ=f(ψ) с использованием n1 и показателя преломления пленки n и коэффициента экстинкции k. Экспериментально определяют эллипсометрические параметры Δэксп и ψэксп для полупрозрачных пленок, пропускающих луч лазера, результаты экспериментальных значений фиксируют в плоскости для соотнесения с эталонной зависимостью Δ=f(ψ). Технический результат - обеспечение точности определения толщины и качества металлических пленок. 4 ил.

Формула изобретения RU 2 558 645 C1

Способ контроля состава материала при формировании структуры, заключающийся в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ, отличающийся тем, что предварительно определяют эллипсометрическим методом с использованием лазерного эллипсометра с длиной волны 0,6328 мкм показатель преломления прозрачной подложки n1 с обратной матовой поверхностью, на полированные поверхности прозрачных подложек наносят металлические пленки, освещают подложки лучом лазера со стороны нанесенной пленки, отбирая образцы, пропускающие луч лазера, на лазерном эллипсометре с длиной волны 0,6328 мкм измеряют эллипсометрические параметры Δ и ψ пленки, не пропускающей луч лазера, рассчитывают для нее с использованием программно-аппаратного средства, связанного с эллипсометром, оптические константы пленки - показателя преломления n и коэффициента экстинкции k и формируют эталонную зависимость в виде функции Δ=f(ψ) с использованием n1 и показателя преломления пленки n и коэффициента экстинкции k, экспериментально определяют эллипсометрические параметры Δэксп и ψэксп для полупрозрачных пленок, пропускающих луч лазера, результаты экспериментальных значений фиксируют в плоскости для соотнесения с эталонной зависимостью Δ=f(ψ).

Документы, цитированные в отчете о поиске Патент 2015 года RU2558645C1

СПОСОБ ЭЛЛИПСОМЕТРИЧЕСКОГО ИССЛЕДОВАНИЯ ТОНКИХ ПЛЕНОК НА ПЛОСКИХ ПОДЛОЖКАХ 1997
  • Никитин А.К.
RU2133956C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ И ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ТОНКИХ ПРОЗРАЧНЫХ ПОКРЫТИЙ НА ПОДЛОЖКЕ 2008
  • Белов Михаил Леонидович
  • Городничев Виктор Александрович
  • Козинцев Валентин Иванович
  • Федотов Юрий Викторович
RU2415378C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ТОНКОЙ ПРОЗРАЧНОЙ ПЛЕНКИ 2011
  • Акашев Лев Александрович
  • Шевченко Владимир Григорьевич
  • Кочедыков Виктор Анатольевич
  • Попов Николай Александрович
RU2463554C1
US 7616319 B1, 10.11.2009

RU 2 558 645 C1

Авторы

Завадский Юрий Иванович

Колковский Юрий Владимирович

Концевой Юлий Абрамович

Курмачев Виктор Алексеевич

Даты

2015-08-10Публикация

2014-01-17Подача