СПОСОБ ПОВЫШЕНИЯ СТОЙКОСТИ К СУЛЬФИДНОЙ КОРРОЗИИ ПОРОШКОВЫХ НИКЕЛЕВЫХ СПЛАВОВ Российский патент 2015 года по МПК C22C1/02 C22C1/04 B22F3/04 

Описание патента на изобретение RU2560469C1

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжело нагруженных деталей, работающих при повышенных температурах.

Известен сплав на основе никеля, в котором для повышения коррозионной стойкости в кислых средах используют способ легирования медью (Патент РФ №2097439, С22С 19/05, 1995 г. «Коррозионно-стойкий сплав, способ повышения коррозионной стойкости и обработанный давлением продукт»).

Основные элементы сплава хром (22,0-24,5%), молибден (14,0-18%),

(медь 1,0-3,5%), марганец (0,1-2,0%).

Для этого сплава характерны низкие значения механических свойств, хорошая коррозионная стойкость в кислых средах и низкое сопротивление сульфидной коррозии (СК) в условиях работы тяжело нагруженных деталей, работающих при повышенных температурах.

СК возрастает при повышении температуры более 650°C.

Порошковые никелевые жаропрочные сплавы имеют обычно высокие характеристики механических свойств, однако большинство из них подвержены сульфидной коррозии, которая, как правило, не определяется и не отражается в текстах патентов.

Например, в патенте РФ 2516267 C22C, от 20.05.2014 изложен современный способ изготовления изделия из порошковых жаропрочных никелевых сплавов, включающий все элементы современной технологии. Но это обеспечивает только увеличение механических свойств и снижение скорости распространения усталостной трещины (СРТУ), при этом стойкость к СК изделия не гарантируется.

Известен также патент RU №2516681 С1, 20.05.2014, в котором предложен никелевый сплав, обладающий высокой стойкостью к СК и высоким сопротивлением малоцикловой усталости (МЦУ) в условиях воздействия агрессивной среды (прототип). Однако новый сплав еще не прошел производственную апробацию, а широко используемые в промышленности сплавы необходимо гарантированно защитить от сульфидной коррозии.

Возникла необходимость разработки способа защиты от СК с учетом особенности химического состава за счет корректировки некоторых технологических операций.

Новый способ был опробован на трех отечественных никелевых жаропрочных сплавах, полученных методом порошковой металлургии. Это сплавы ЭП741НП (патент RU 2160789 С2, 20.12.2000), ВВ750П (патент RU 2294393 С1, 27.02.2007), ВВ751П (патент RU 2368683 С1, 27.09.2009).

Составы сплавов зафиксированы в ГОСТ Р 52802-2007. Первый из них широко применяется в авиационной технике. Два других активно начинают внедряться в производство. Во всех перечисленных патентах поставлены задачи увеличения соответствующих механических свойств, важных при эксплуатации ГТД. Однако ничего нет о сопротивлении СК.

Предлагаемый способ характерен тем, что, с целью повышения малоцикловой усталости в сульфидной среде (коррозионной малоцикловой усталости КМУ), при выплавке заготовок для распыления в гранулы производят легирование сплава таким образом, чтобы суммарное содержание трех легирующих элементов - молибдена, ниобия и титана - было на уровне не менее 95% от содержания хрома, а разливку расплава проводят в кокили при температуре 1540-1560°C.

Такое изменение технологии изготовления порошковых жаропрочных никелевых сплавов приводит к формированию на поверхности изделия особой оксидной пленки, что увеличивает сопротивление к сульфидной коррозии. В результате сопротивление к СК, измеренное по способу, описанному в патенте РФ 2516271 от 28.12.2012 г. повышается более чем в 1,5 раза.

Примеры

Из выбранных сплавов (ЭП741НП, ВВ750П и ВВ751П) по предлагаемому, а также по принятому в цехе традиционному способу были изготовлены заготовки для распыления, из обоих видов заготовок получены гранулы. Затем проведены операции их классификации, дегазации, герметизации капсулы, ГИП и термообработки готового изделия

Химический состав и температура сплавов приведены в таблице 1.

В предлагаемых вариантах сплавов соотношение суммы Ni, Mo, Nb>0,95 Cr, а температура расплава выше 1530°C. В прототипе напротив соотношение содержания элементов Ni, Mo, Nb<0,95 Cr, а температура расплава меньше 1530°C.

Полученные свойства приведены в таблице 2.

Из представленных в таблицах 1 и 2 данных очевидно, что при изготовлении заготовок по предлагаемому способу особенно заметно возрастает сопротивление малоцикловой усталости при воздействии сульфидной. среды (увеличивается на 60-80%). Изготовление по действующей технологии снижает сопротивление малоцикловой усталости под действием сульфидной среды (примерно в 2 раза).

Учитывая важность этой характеристики при эксплуатации изделия, такое увеличение ее под влиянием сульфидной коррозии будет способствовать росту долговечности деталей ГТД в 1,5-2,0 раза.

Похожие патенты RU2560469C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ, СТОЙКИЙ К СУЛЬФИДНОЙ КОРРОЗИИ И ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕ ИЗ НЕГО 2013
  • Синявский Владимир Сергеевич
  • Александрова Татьяна Васильевна
  • Востриков Алексей Владимирович
  • Гриц Нина Михайловна
RU2516681C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СЛОЖНОЛЕГИРОВАННЫХ ПОРОШКОВЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2012
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Казберович Алексей Михайлович
  • Востриков Алексей Владимирович
  • Волков Александр Максимович
  • Федоренко Елизавета Александровна
  • Катуков Сергей Александрович
  • Шмелев Виталий Петрович
RU2516267C1
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКОГО ДИСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2013
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Казберович Алексей Михайлович
  • Бочарова Александра Александровна
  • Востриков Алексей Владимирович
  • Волков Александр Максимович
  • Федоренко Елизавета Александровна
RU2537335C1
Способ получения изделий из гранул, выполненных из сплавов на основе никеля или из сплавов на основе титана 2023
  • Кошелев Александр Владимирович
  • Ваулин Дмитрий Дмитриевич
  • Казберович Алексей Михайлович
  • Старовойтенко Евгений Иванович
RU2799458C1
СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛЕЙ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ С ДЛИТЕЛЬНЫМ РЕСУРСОМ ЭКСПЛУАТАЦИИ ИЗ ПОРОШКОВЫХ НИКЕЛЕВЫХ СПЛАВОВ 2012
  • Гарибов Генрих Саркисович
  • Казберович Алексей Михайлович
  • Гриц Нина Михайловна
  • Федоренко Елизавета Александровна
RU2483835C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ В ВИДЕ ДИСКОВ ИЛИ ВАЛОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ИЗ ГРАНУЛИРУЕМЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2010
  • Еременко Василий Иванович
  • Фаткуллин Олег Хикметович
  • Фурашов Алексей Сергеевич
  • Фаткуллин Станислав Игоревич
  • Щукарев Анатолий Константинович
RU2433204C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2008
  • Каблов Евгений Николаевич
  • Ломберг Борис Самуилович
  • Овсепян Сергей Вячеславович
  • Лимонова Елена Николаевна
  • Бакрадзе Михаил Михайлович
  • Чабина Елена Борисовна
  • Вавилин Николай Львович
RU2365657C1
СПОСОБ ТЕРМООБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ЭП741НП 2021
  • Шильников Евгений Владимирович
  • Кабанов Илья Викторович
  • Сидорина Татьяна Николаевна
  • Лисовский Александр Владимирович
  • Троянов Борис Владимирович
RU2772725C1
СПОСОБ ИСПЫТАНИЯ НА СУЛЬФИДНУЮ КОРРОЗИЮ ЖАРОПРОЧНЫХ ПОРОШКОВЫХ НИКЕЛЕВЫХ СПЛАВОВ 2012
  • Синявский Владимир Сергеевич
  • Александрова Татьяна Васильевна
RU2516271C1
Способ поэтапной закалки заготовок из гранулируемых жаропрочных никелевых сплавов 2018
  • Бер Леонид Борисович
  • Казберович Алексей Михайлович
  • Ваулин Дмитрий Дмитриевич
  • Зенин Владимир Анатольевич
RU2697684C1

Реферат патента 2015 года СПОСОБ ПОВЫШЕНИЯ СТОЙКОСТИ К СУЛЬФИДНОЙ КОРРОЗИИ ПОРОШКОВЫХ НИКЕЛЕВЫХ СПЛАВОВ

Изобретение относится к области металлургии, в частности к порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей. Способ получения изделия из жаропрочных никелевых сплавов включает выплавку расходуемой заготовки для производства гранул, получение гранул, их квалификацию, дегазацию, герметизацию капсулы, горячее изостатическое прессование (ГИП) и термическую обработку готового изделия. При выплавке расходуемых заготовок суммарное содержание трех легирующих элементов: титана, молибдена и ниобия поддерживают не менее 95% от содержания хрома в составе сплава, а разливку расплава в кокиль проводят при температуре 1540-1560°C. Повышается малоцикловая усталость в сульфидной среде. 2 табл., 3 пр.

Формула изобретения RU 2 560 469 C1

Способ получения изделия из жаропрочных никелевых сплавов, включающий выплавку расходуемой заготовки для производства гранул, получение гранул, их квалификацию, дегазацию, герметизацию капсулы, горячее изостатическое прессование (ГИП) и термическую обработку готового изделия, отличающийся тем, что при выплавке расходуемых заготовок суммарное содержание трех легирующих элементов: титана, молибдена и ниобия поддерживают не менее 95% от содержания хрома в составе сплава, а разливку расплава в кокиль проводят при температуре 1540-1560°C.

Документы, цитированные в отчете о поиске Патент 2015 года RU2560469C1

СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СЛОЖНОЛЕГИРОВАННЫХ ПОРОШКОВЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2012
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Казберович Алексей Михайлович
  • Востриков Алексей Владимирович
  • Волков Александр Максимович
  • Федоренко Елизавета Александровна
  • Катуков Сергей Александрович
  • Шмелев Виталий Петрович
RU2516267C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СЛОЖНОЛЕГИРОВАННЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2011
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
RU2457924C1
Огнетушитель 0
  • Александров И.Я.
SU91A1
US 3702791 A, 14.11.1972
JP 60002637 A, 08.01.1985

RU 2 560 469 C1

Авторы

Синявский Владимир Сергеевич

Ковтунов Александр Игоревич

Востриков Алексей Владимирович

Гриц Нина Михайловна

Даты

2015-08-20Публикация

2014-09-26Подача