СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА МОЛИБДЕН-99 Российский патент 2015 года по МПК G21G4/08 

Описание патента на изобретение RU2560966C2

Изобретение относится к области химической технологии производства радиоактивных изотопов медицинского назначения. Прикладное значение изотопа молибден-99 определяется получением из него дочернего радионуклида технеций-99m, который в течение последних лет остается наиболее широко используемым в ядерной медицине радионуклидом.

Известен способ получения концентрата молибдена-99, включающий облучение растворного уранового топлива, концентрирование молибдена методом сорбции на неорганическом сорбенте марки Т-5, представляющем собой оксигидрат титана с добавкой оксигидрата циркония, и последующий аффинаж (Н.Д. Бетенеков, Е.И. Денисов, Т.А. Недобух, Л.М. Шарыгин. Патент США №6337055 от 08.02.2002). Недостатком данного способа является использование в качестве исходного сернокислого раствора урана, что из-за проблем коррозии накладывает существенные ограничения по применению данного способа в радиохимическом производстве с оборудованием из нержавеющей стали.

Наиболее близким по технической сущности к заявляемому решению является способ получения концентрата радионуклида молибден-99, включающий растворение облученной урановой мишени в азотной кислоте, концентрирование молибдена-99 на неорганическом сорбенте Т-5 и последующий аффинаж (Бетенеков Н.Д, Денисов Е.И., Ровный С.И., Логунов М.В., Ворошилов Ю.А., Бугров К.В. Патент №2288516 от 25.04.2005), выбранный в качестве прототипа. Недостатком данного способа является то, что десорбцию молибдена с Т-5 перед аффинажным переделом проводят калиевой или натриевой щелочью, то есть засоляющими агентами, которые затрудняют дальнейшую очистку и препятствуют проведению аффинажа сублимационным методом. Кроме того, данный способ не позволяет получить препарат молибден-99, то есть продукт с высокой степенью очистки.

Задачей настоящего технического решения является усовершенствование процесса выделения молибдена-99 из раствора облученной урановой мишени на стадии концентрирования и аффинажа с целью получения препарата молибден-99.

Указанная задача достигается тем, что концентрирование молибдена-99 на неорганическом сорбенте Т-5 проводят в одну или две стадии, десорбцию молибдена перед этапом аффинажа осуществляют не засоляющим термически разлагаемым реагентом, а на этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата, причем в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий.

Технология осуществления способа заключается в следующем. Облученную урановую мишень растворяют в растворе азотной кислоты в присутствии или без катализатора (в зависимости от материала мишени). Полученный азотнокислый раствор в соответствии с прототипом пропускают через колонку, заполненную сорбентом Т-5, со скоростью фильтрации от 5 до 60 колоночных объемов в час (к.о./ч). Концентрация азотной кислоты в исходном растворе не лимитируется и определяется составом растворяемой мишени. Колонку промывают кислотой и водой, или только водой. Молибден десорбируют с колонки щелочным раствором.

В случае дальнейшего направления раствора на аффинажный передел в качестве десорбирующих щелочных растворов используют не засоляющие термически разлагаемые реагенты: от 1 до 5 моль/л гидроксид аммония; от 10% до 40% гидроксид тетраалкиламмония; от 0,1 до 1 моль/л гуанидина или гуанидин карбоната, или их смеси. Поскольку в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий, данный раствор направляют на анионообменный аффинаж.

Снижение концентрации реагентов в указанных десорбирующих растворах ниже заданного концентрационного диапазона приводит к неполной десорбции молибдена с сорбента, а увеличение концентрации выше верхней границы диапазона приводит к негативному влиянию компонента на последующую стадию анионообменной очистки молибдена. Скорость фильтрации десорбирующего раствора составляет от 5 до 50 к.о./ч, температура процесса от 40 до 90°C.

При необходимости, осуществляют вторую стадию концентрирования молибдена-99 на сорбенте Т-5. В этом случае десорбцию молибдена после первой стадии концентрирования проводят в соответствии с прототипом раствором калиевой или натриевой щелочи с концентрацией от 0,5 до 1,5 моль/л со скоростью от 5 до 50 к.о./ч при температуре от 40 до 90°C. Прием десорбата молибдена первой стадии концентрирования осуществляют в промежуточную емкость на «подушку» крепкой азотной кислоты с целью его подкисления до концентрации 0,01-0,5 моль/л по азотной кислоте. Дальнейшее повышение концентрации азотной кислоты приводит к неоправданному увеличению объема продукта. Полученный таким образом азотнокислый раствор является исходным для второй стадии концентрирования на неорганическом сорбенте Т-5.

Вторая стадия концентрирования молибдена-99 на сорбенте Т-5 на стадиях сорбции и промывки по технологическим параметрам аналогична первой. Десорбцию молибдена-99 после второй стадии концентрирования проводят не засоляющими термически разлагаемыми реагентами, как указано выше. Полученный бессолевой раствор молибдена направляют на этап аффинажа.

На этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата.

Анионообменную очистку осуществляют с помощью высокоосновного анионита, функциональной группой которого является четвертичный амин (-N+≡), например на анионите Lewatit МР-500. Щелочной раствор на основе не засоляющего термически разлагаемого реагента с предварительным разбавлением или без него пропускают через колонку, заполненную анионитом, со скоростью фильтрации от 5 до 20 к.о./ч при температуре не более 20°C. После сорбции колонку с анионитом промывают водой и десорбируют молибден раствором азотной кислоты с концентрацией от 1 до 6 моль/л в присутствии или в отсутствие от 0,5 до 10 г/л пероксида водорода. Скорость фильтрации десорбирующего раствора составляет от 5 до 20 к.о./ч, температура процесса от 40 до 90°C.

Понижение скорости фильтрации в процессах сорбции и десорбции на этапах концентрирования и аффинажа ниже 5 к.о./ч неоправданно затягивает процесс. Увеличение скорости фильтрации выше указанных диапазонов, повышение температуры в процессе сорбции на стадии анионообменного аффинажа, снижение температуры ниже нижнего предела в процессе десорбции на этапах концентрирования и аффинажа приводит к повышенным потерям целевого компонента. Превышение температуры в процессе десорбции на всех стадиях более 90°C чревато вскипанием растворов и нарушением гидродинамики процессов.

Заключительной стадией является высокотемпературная очистка препарата. Итоговый щелочной десорбат на основе не засоляющего термически разлагаемого реагента со второй стадии концентрирования или азотнокислый десорбат со стадии анионообменного аффинажа упаривается досуха. Упаривание может быть реализовано как в статических условиях, после сбора всего объема десорбата в емкости, так и в динамических условиях путем непрерывной подачи десорбата в печь.

Стадию высокотемпературной очистки производят без возгонки или с возгонкой молибдена в газовую фазу. В первом случае при температуре 450-600°C осуществляют отгонку легколетучих примесей (радиоизотопов йода, цезия, рутения и т.д.), при этом молибден остается в реакторе. Во втором случае после удаления легколетучих примесей осуществляют сублимацию молибдена при температуре от 900 до 1200°C и улавливание триоксида молибдена из газовой фазы в холодильнике.

В обоих вариантах смыв молибдена с поверхности реактора или холодильника осуществляют после охлаждения раствором азотной кислоты или гидроксида натрия с концентрацией от 0,1 до 3 моль/л. Раствор, полученный в результате смыва, является препаратом молибден-99.

Сравнительный анализ с прототипом позволяет сделать вывод, что в заявляемом техническом решении на этапе аффинажа применяются дополнительные стадии анионообменной и высокотемпературной очистки концентрата. Таким образом, заявляемое решение соответствует критерию «новизна».

В литературных источниках приводится обширный объем информации о возможности выделения молибдена-99 на всевозможных сорбционных материалах и различных вариантах организации процессов сорбции и десорбции (Радиохимия, 1999, т.41, №3, с.193-204). Однако применение для десорбции молибдена щелочных не засоляющих термически разлагаемых органических реагентов, таких как гидроксид тетраалкиламмония, гуанидин или карбонат гуанидина, в литературе не описано. Возможность десорбции молибдена-99 данными реагентами с неорганического сорбента Т-5 обнаружена авторами, является новой и неожиданной. Факт эффективной сорбции молибдена-99 на сильноосновных анионитах с функциональной группой типа «четвертичный амин (-N+≡)» только при температуре не выше 20°C также обнаружен авторами и в литературе не описан. Все изложенное позволяет признать заявляемое техническое решение соответствующим критерию «изобретательский уровень».

Возможность осуществления заявляемого технического решения подтверждается следующими примерами:

Пример 1

Облученную уран-алюминиевую мишень растворили в азотной кислоте в присутствии азотнокислой ртути. Раствор после растворения имел состав: 3,5 моль/л HNO3; 24 г/л А1; 1,5 г/л U; 1,6·109 Бк/см3 99Mo (содержание других продуктов деления указано в таблице 1).

Данный раствор направили на первую стадию концентрирования на сорбенте Т-5. Скорость фильтрации поддерживали около 25 к.о./ч. После сорбции колонку промыли 3 моль/л азотной кислотой и водой при скорости фильтрации от 25 до 50 к.о./ч. Объем промывных растворов составил по 15 к.о. каждый. Потери молибдена-99 в фильтрат и промывку первого цикла очистки не превысили 4%. Далее провели десорбцию молибдена-99 с сорбента 1,0 моль/л раствором натриевой щелочи со скоростью фильтрации 10 к.о./ч при температуре 80°C. Объем десорбата составил 10 к.о. Выход молибдена-99 на первом цикле составил 95% от исходного количества.

Щелочной десорбат первой стадии концентрирования приняли на «подушку» крепкой азотной кислоты, так чтобы итоговая концентрация азотной кислоты в растворе составила около 0,2 моль/л. Данный раствор направили на вторую стадию концентрирования на сорбенте Т-5. Скорость его фильтрации составила 50 к.о./ч. После сорбции колонку промыли 0,1 моль/л раствором азотной кислоты и водой при скорости фильтрации от 80 до 100 к.о./ч. Объем промывных растворов составил по 20 к.о. каждый. Потери молибдена-99 в фильтрат и промывку второй стадии концентрирования не превысили 0,7%. Десорбцию молибдена-99 провели 30% раствором тетраэтиламмония объемом 10 к.о. со скоростью фильтрации 10 к.о./ч при температуре 70°C. В десорбат выделено более 90% от количества молибдена-99, поданного на вторую стадию концентрирования.

Щелочной десорбат второй стадии концентрирования разбавили вдвое водой. Полученный раствор после перемешивания направили на стадию анионообменного аффинажа на анионите Lewatit МР-500. Скорость фильтрации через колонку равнялась 10 к.о./ч, температура процесса 15°C. После сорбции анионит промыли водой при скорости фильтрации от 20 до 25 к.о./ч. Объем промывки составил 20 к.о. Десорбцию молибдена-99 провели в 10 к.о. 5,0 моль/л раствора азотной кислоты в присутствии 1 г/л H2O2 со скоростью фильтрации 5 к.о./ч при температуре 60°C. В десорбат выделено около 85% от количества молибдена-99, поданного на данную стадию.

В процессе десорбции молибдена-99 с анионита Lewatit МР-500 десорбат принимали в кварцевый реактор, который после окончания процесса установили в шахтную печь. Раствор упарили досуха и по окончании упаривания произвели выдержку реактора в шахте печи при температуре 600°C в течение 60 мин. Далее реактор извлекли из шахты печи и охладили в течение 20 мин.

Для смыва молибдена с внутренней поверхности реактора использовали раствор гидроксида натрия с молярной концентрацией 0,3 моль/л. Объемная активность молибдена-99 в препарате составила 1,1·1011 Бк/см3. Качество полученного препарата молибдена-99 демонстрирует таблица 2.

Пример 2

На первую стадию очистки подали раствор уран-цинковой мишени с составом, мг/л: Mo - 5; U - 1300; Zn - 18000; Fe - 40; Cu - 10; Mn - 10; Pb - 10; Zr -10; Ce - 10; Cr - 10; Ni - 10; HNO3 - 4 моль/л. Растворение проводили в азотной кислоте без катализатора. Параметры проведения первой стадии концентрирования в ходе процессов сорбции и промывки были аналогичны указанным в примере 1. Потери молибдена с фильтратом и промывкой составили 4,1%. Десорбцию молибдена с сорбента осуществляли раствором гидроксида тетраметиламмония с объемным содержанием 15% со скоростью фильтрации 10 к.о./ч при температуре 70°C. Объем десорбата составил 10 к.о.

Щелочной десорбат с этапа концентрирования без разбавления направили на стадию анионообменного аффинажа с анионитом Lewatit МР-500. Сорбцию провели при температуре 20°C при скорости фильтрации 10 к.о./ч. Насыщенную молибденом колонку с анионитом Lewatit МР-500 промыли водой при скорости фильтрации от 20 до 25 к.о./ч. Объем промывки составил 30 к.о.

Десорбцию молибдена с анионита Lewatit МР-500 осуществляли 4,0 моль/л раствором азотной кислоты со скоростью 10 к.о./ч при температуре 80°C. Прием раствора осуществляли в кварцевый реактор, находящийся в разогретой до 550°C трубчатой печи. Таким образом, десорбция компонента с анионита и упаривание десорбата происходили одновременно (упаривание в динамических условиях).

По окончании приема десорбата в реактор произвели выдержку продукта в печи при температуре 600°C в течение 30 мин для отгонки легколетучих примесей, после чего температуру в печи подняли до 1100°C и провели возгонку и улавливание триоксида молибдена в холодильнике. Продолжительность последней стадии составила 30 мин. Далее холодильник извлекли из реактора печи и охладили в течение 20 мин. Смыв молибдена с внутренней поверхности холодильника провели раствором 0,5 моль/л азотной кислоты. Итоговый раствор, являющийся препаратом молибдена, имел следующий состав, мг/л: Mo - 400; Al - 0,3; Fe - 0,1; Cu - 0,01; Mn - 0,05; Pb - 0,02 (присутствие примесей Al, Fe, Cu, Mn и Pb обусловлено их содержанием в растворе азотной кислоты, применяемой для смыва молибдена). Выход молибдена на данной операции составил около 90%, а общий технологический выход компонента в препарат - около 70%.

Пример 3

Облученную уран-алюминиевую мишень растворили в азотной кислоте в присутствии азотнокислой ртути. Раствор после растворения имел состав: 3,8 моль/л HNO3; 22 г/л Al; 1,3 г/л U; 1,8·109 Бк/см3 99Мо.

Данный раствор направили на первую стадию концентрирования на сорбенте Т-5. Скорость фильтрации поддерживали около 25 к.о./ч. После сорбции колонку промыли 3 моль/л азотной кислотой и водой при скорости фильтрации от 25 до 50 к.о./ч. Объем промывных растворов составил по 15 к.о. каждый. Потери молибдена-99 в фильтрат и промывку первого цикла очистки составили 3,5%. Далее провели десорбцию молибдена-99 с сорбента 1,0 моль/л раствором натриевой щелочи со скоростью фильтрации 10 к.о./ч при температуре 90°C. Объем десорбата составил 10 к.о. Выход молибдена-99 на первом цикле составил 96% от исходного количества.

Щелочной десорбат первой стадии концентрирования приняли на «подушку» крепкой азотной кислоты, так чтобы итоговая концентрация азотной кислоты в растворе составила около 0,1 моль/л. Данный раствор направили на вторую стадию концентрирования на сорбенте Т-5. Скорость его фильтрации составила 40 к.о./ч. После сорбции колонку промыли 0,1 моль/л раствором азотной кислоты и водой при скорости фильтрации от 80 до 100 к.о./ч. Объем промывных растворов составил по 20 к.о. каждый. Потери молибдена-99 в фильтрат и промывку второй стадии концентрирования не превысили 1,1%. Десорбцию молибдена-99 провели 1 моль/л раствором карбоната гуанидина объемом 10 к.о. со скоростью фильтрации 10 к.о./ч при температуре 60°C. Прием раствора осуществляли в кварцевый реактор, находящийся в разогретой до 550°C трубчатой печи. Таким образом, упаривание проводили в динамических условиях.

По окончании приема десорбата в реактор произвели выдержку продукта в печи при температуре 600°C в течение 30 мин для отгонки легколетучих примесей, после чего температуру в печи подняли до 1100°C и провели возгонку и улавливание триоксида молибдена в холодильнике. Продолжительность последней стадии составила 30 мин. Далее холодильник охладили в течение 20 мин. Смыв молибдена с внутренней поверхности холодильника провели раствором 0,5 моль/л натриевой щелочи. Общий технологический выход компонента в препарат составил около 78%. Итоговый раствор соответствовал требованиям фармакопеи (см. таблицу 2).

Приведенные примеры показывают, что при использовании заявляемого технического решения в ходе трех или четырех стадий концентрирования и аффинажа возможно высокая очистка молибдена-99 от сопутствующих стабильных и радиоактивных примесей с получением препарата молибден-99 фармакопейного качества.

Таблица 1 Результаты анализа γ-активных примесей в технологических продуктах, полученных при переработке мишени по примеру 1 Продукт Содержание примесей в целевых продуктах, генерируемых на стадиях технологического процесса Раствор блока Десорбат I стадии концентрирования (сорбент Т-5) Десорбат II стадии концентрирования (сорбент Т-5) Десорбат стадии анионообменного аффинажа (сорбент Lewatit МР-500) Стадия высокотемпературной обработки Смыв Mo с реактора Препарат Mo-99 Время анализа, ч∗ 0 12,5 22,5 34,5 80,5 46 95Nb 9,51·108 - - - ≤1,07·106 ≤5,81·105 95Zr 2,25·108 2,43·106 - - ≤2,06·106 ≤8,1·105 97Zr 3,00·108 - - - - - 103Ru 1,79·108 <2,21·106 - - ≤3,7·106 ≤9,91·105 125Sb 2,77·107 - - - - - 127Sb 3,33·107 2,44·107 2,54·107 - - - 131I 4,52·109 2,75·109 9,81·108 1,07·108 ≤4,7·106 ≤8,94·105 132I 1,02·109 5,6·108 - - ≤1,82·106 ≤6,79·105 133I 5,17·108 3,07·109 4,83·108 3,98·107 - - 132Te 1.39·109 1.6·107 - - ≤1,85·106 ≤7,43·105 140La 8,78·108 6.7·105 - - ≤2,59·106 ≤4,38·104 140Ba -∗∗ <4,0·107 - - - - 133Ce - 1,45·108 - - - - 141Ce 3,98·106 - - ≤3,28·107 - - 143Ce 1,04·109 - - - - - 144Ce 5,05·107 1,04·107 - - - - 147Nd 3,59·108 5,4·108 - - - - 153Sm 6,06·107 - - - - - 239Np - - - - - - ∑γдр. - - - - - ≤1,44·106 Примечание: ∗ - Время анализа продукта, прошедшее после растворения мишени. ∗∗ - Объемная активность радионуклида ниже предела обнаружения данной методики.

Таблица 2 Сравнение качества препарата молибден-99, полученного по примеру 1, с качеством препарата различных производителей Контролируемый параметр Производитель (страна) Заявляемое техническое решение Necsa (ЮАР) British (Англия) Nordion (Бельгия) Nordion (Канада) I131 ≤5·10-5 ≤5·10-5 ≤5·10-5 ≤5·10-5 2,6·10-6 Ru103 ≤5·10-5 ≤5·10-5 ≤5·10-5 ≤5·10-5 1,5·10-8 Te132 - ≤5·10-5 - ≤5·10-5 He обнаружено Относительное Il32 - - - - He обнаружено содержание Sr89 ≤6·10-7 ≤6·10-7 ≤6·10-7 ≤6·10-7 2,8·10-8 радиохимических Sr90 ≤6·10-8 - ≤6·10-8 ≤1,5·10-8 1,7·10-10 примесей, ∑γ ≤1·10-4 - - - - Ки/Ки 99Mo ∑других γ - ≤1·10-4 - ≤5·10-5 2,2·10-7 ∑других β/γ - - ≤1·10-4 - - ∑α ≤1·10-9 ≤1·10-9 ≤1·10-9 ≤1·10-10 <2,3·10-12 Радиохимическая чистота, % - - - - - 96 Химическая форма (среда), моль/дм3 NaOH - Щелочная 1,6-2,4∗ 0,1-0,3 0,3 среда 0,1-0,3∗ HNO3 - - - - - Активность препарата 99Mo, не менее Объемная, Ku/см3 - 0,01 - 0,35 1,1 Удельная, ГБк (Кu)/г Mo - - 185000 (5000) - - ∗ Концентрация NH4NO3 в препарате может достигать 1 моль/дм3

Похожие патенты RU2560966C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА РАДИОНУКЛИДА МОЛИБДЕН-99 2005
  • Ровный Сергей Иванович
  • Логунов Михаил Васильевич
  • Ворошилов Юрий Аркадьевич
  • Бетенеков Николай Дмитриевич
  • Денисов Евгений Иванович
  • Шарыгин Леонид Михайлович
  • Бугров Константин Владимирович
  • Никипелов Владислав Борисович
RU2288516C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛУТОНИЯ И НЕПТУНИЯ 2002
  • Стародумов В.П.
  • Агеева И.И.
  • Балахонов В.Г.
  • Григорьева Л.А.
  • Катушонок А.Н.
  • Карпов А.А.
  • Лысак С.Б.
  • Матюха В.А.
  • Сулима С.Г.
  • Шадрин Г.Г.
RU2240981C2
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ ИЗ СОЛЯНОКИСЛЫХ РАСТВОРОВ СЛОЖНОГО СОСТАВА 2006
  • Блохин Александр Андреевич
  • Абовский Николай Дмитриевич
  • Мурашкин Юрий Васильевич
RU2312910C2
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 2013
  • Хамизов Руслан Хажсетович
  • Крачак Анна Наумовна
  • Груздева Александра Николаевна
  • Бастрыкина Наталья Сергеевна
  • Смирнов Александр Анатольевич
  • Хамизов Султан Хажсетович
  • Черненко Юрий Дмитриевич
  • Цикин Максим Николаевич
  • Долгов Виктор Васильевич
  • Сущев Владимир Сергеевич
  • Соколов Владимир Васильевич
RU2545337C2
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 2013
  • Хамизов Руслан Хажсетович
  • Крачак Анна Наумовна
  • Груздева Александра Николаевна
  • Бастрыкина Наталья Сергеевна
  • Смирнов Александр Анатольевич
  • Хамизов Султан Хажсетович
  • Черненко Юрий Дмитриевич
  • Цикин Максим Николаевич
  • Долгов Виктор Васильевич
  • Сущев Владимир Сергеевич
  • Соколов Владимир Васильевич
RU2544731C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕРОД-КРЕМНЕЗЕМИСТЫХ ЧЕРНОСЛАНЦЕВЫХ РУД 2011
  • Сарычев Геннадий Александрович
  • Денисенко Александр Петрович
  • Зацепина Мария Сергеевна
  • Деньгинова Светлана Юрьевна
  • Татаринов Александр Сергеевич
  • Смирнов Константин Михайлович
  • Пеганов Владимир Алексеевич
RU2477327C1
СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА НА ОСНОВЕ РАДИЯ-224 2010
  • Нерозин Николай Александрович
  • Шаповалов Владимир Владимирович
  • Котовский Анатолий Алексеевич
  • Болонкин Александр Сергеевич
  • Ермолов Николай Антонович
RU2441687C2
СПОСОБ ВЫДЕЛЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ 2002
  • Плеханов К.А.
  • Ашихин В.В.
  • Шевелева Л.Д.
  • Лебедь А.Б.
  • Краюхин С.А.
  • Скопин Д.Ю.
  • Хафизов Т.М.
  • Воронцов В.В.
RU2238244C2
Способ разделения нептуния (1у) и плутония (1у) 1981
  • Тананаев И.Г.
  • Дзюбенко В.И.
  • Крот Н.Н.
SU997309A1
СПОСОБ ИОНООБМЕННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ И ПУЛЬП 2004
  • Шаталов В.В.
  • Федулов Ю.Н.
  • Пеганов В.А.
  • Огнев А.Н.
  • Голубцова И.Ю.
  • Ульянов В.В.
  • Соколова Н.П.
RU2259412C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА МОЛИБДЕН-99

Заявленное изобретение относится к химической технологии производства радиоактивных изотопов медицинского назначения. В заявленном способе предусмотрен процесс выделения молибдена-99 из раствора облученной урановой мишени на стадии концентрирования и аффинажа с целью получения препарата молибден-99. При этом концентрирование молибдена-99 из азотнокислого раствора урановой мишени на неорганическом сорбенте проводят в одну или две стадии, десорбцию молибдена перед этапом аффинажа осуществляют не засоляющим термически разлагаемым реагентом. Далее на этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата, причем в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий. Техническим результатом является повышение химической и радиохимической чистоты препарата молибден-99 при достижении существующих на мировом рынке требований к препарату и сохранения приемлемого технологического выхода. 3 з.п. ф-лы, 3 пр., 2 табл.

Формула изобретения RU 2 560 966 C2

1. Способ получения препарата радионуклида молибден-99, включающий растворение облученной урановой мишени в азотной кислоте, сорбционное концентрирование молибдена на неорганическом сорбенте Т-5 и последующий аффинаж, отличающийся тем, что концентрирование молибдена-99 на неорганическом сорбенте Т-5 проводят в одну или две стадии, десорбцию молибдена перед этапом аффинажа осуществляют не засоляющим термически разлагаемым реагентом, а на этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата, причем в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий.

2. Способ по п.1, отличающийся тем, что в качестве не засоляющих термически разлагаемых реагентов для десорбции молибдена перед этапом аффинажа используют от 1 до 5 моль/л раствор гидроксида аммония, от 10% до 40% раствор гидроксида тетраалкиламмония, от 0,1 до 1 моль/л раствор гуанидина или гуанидин карбоната, или их смеси.

3. Способ по п.1, отличающийся тем, что анионообменную очистку осуществляют с помощью высокоосновного анионита, функциональной группой которого является четвертичный амин (), например на анионите Lewatit МР-500, причем сорбцию молибдена на анионите проводят при температуре не более 20°C.

4. Способ по п.1, отличающийся тем, что стадию высокотемпературной очистки производят без возгонки или с возгонкой молибдена в газовую фазу, при этом в первом случае при температуре 450-600°C осуществляют отгонку легколетучих примесей, при этом молибден остается в реакторе, а во втором случае после удаления легколетучих примесей осуществляют сублимацию молибдена при температуре от 900 до 1200°C и улавливание триоксида молибдена из газовой фазы в холодильнике.

Документы, цитированные в отчете о поиске Патент 2015 года RU2560966C2

УСТРОЙСТВО для СТАПЕЛИРОВАНИЯ ЗАГОТОВОК ИЗ ПРОФИЛЬНОГО ПРОКАТА 0
SU288516A1
СПОСОБ ЭКСТРАКЦИОННОГО ПОЛУЧЕНИЯ ТЕХНЕЦИЯ-99М И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Скуридин В.С.
RU2118858C1
US2007160176 A1, 12.07.2007
WO 2009142669 A2, 26.11.2009

RU 2 560 966 C2

Авторы

Баранов Сергей Васильевич

Баторшин Георгий Шамилевич

Логунов Михаил Васильевич

Ворошилов Юрий Аркадьевич

Бугров Константин Владимирович

Макаров Олег Николаевич

Фадеев Сергей Владимирович

Яковлев Николай Геннадьевич

Денисов Евгений Иванович

Бетенеков Николай Дмитриевич

Мурзин Андрей Анатольевич

Бойцова Татьяна Александровна

Даты

2015-08-20Публикация

2013-11-12Подача