Изобретение относится к физико-химическому, в частности термическому, анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах.
Известный способ дифференциально-термического анализа (ДТА), заключающийся в измерении разности температур в исследуемом образце и эталоне при непрерывном изменении температуры, в аналитической практике не применим, так как существенным недостатком метода является низкая относительная и абсолютная чувствительность примеси на уровне 1% и 10-5 г, соответственно (Уэндландт У. Термические методы анализа. М.: Мир, 1978, с.214-227).
Реализация высокой чувствительности приборов ДТА требует больших значений термического сопротивления тепловому потоку R. Возможности ДТА существенно ограничивает большая инерционность измерений и, вследствие этого, низкая разрешающая способность. Инерционность определяется постоянной времени калориметрической камеры τяч.=RCоб: чем меньше ее значение, тем точнее регистрируется термическое поведение образца. Однако для высокой чувствительности ДТА требуется большое сопротивление R, что несовместимо с требованием быстродействия и высокой разрешающей способности. В приборах ДТА (термопарных) - типичная высокая вольт-ваттная чувствительность 10-400 мВ/Вт, но одновременно низкое быстродействие 10-1000 секунд.
Наиболее близким к предлагаемому изобретению является, выбранный нами в качестве прототипа, способ определения содержания примеси в веществах, включающих измерение дифференциального теплового потока при непрерывном уменьшении температуры, в режиме дифференциально-сканирующей калориметрии (ДСК), при этом содержание примеси определяют по величине скачков на этой зависимости при кристаллизации примеси (Авт.св. СССР №1704050, МКИ G01N 25/02. «Способ определения содержания примеси в веществах» Шляхов А.Т. и др. Опубл. 07.01.92).
В качестве сенсора (тепломера) использована батарея из анизотропных термоэлементов (АТЭ) из висмута. Измерение дифференциального теплового потока осуществляется при условии τяч.≤τкрист.=10-2 с, где τяч. - быстродействие ячейки калориметра, τкрист. - время кристаллизации включений. Это условие достигается, во-первых, тем, что минимально возможная толщина отдельных сенсоров на основе АТЭ из висмута выбирается в пределах 100-150 мкм, что приводит к быстродействию ячейки калориметра в границах 5·10-3-10-2 с, соответственно. Во-вторых, использованы медные контейнеры, каждый массой ≈100 мг, на которых с внешней стороны, размещаются сенсорные батареи из АТЭ.
Недостатками способа является то, что, во-первых, использованы объемные калориметрические камеры размерами (1×0,3×0,3) см3, поэтому по этим же параметрам готовились образец и эталон в виде цельного параллелепипеда, объемом ≈0,09 см3, вследствие этого их масса составляет значительную величину ≈400 мг. Во-вторых, в прототипе нет научного анализа температурного поведения примеси (включений), поэтому в исследуемом полупроводнике арсенида галлия рассматривается только α-модификация микровключений галлия. В-третьих, использование сложной калориметрической системы, предусматривающей традиционный нагрев и охлаждение, а именно спиральные нагреватели и криогенная жидкость (жидкий азот), ведет к повышению «фонового» уровня сигнала с АТЭ и поэтому регистрация полезного сигнала в «тонких» чувствительных экспериментах может быть затруднена.
Целью изобретения является повышение чувствительности и упрощение способа при определении содержания металлических микровключений в полупроводниковых материалах.
Это достигается способом, включающим охлаждение предварительно нагретых исследуемого и эталонного веществ, помещенных на сенсорах из АТЭ с термоэлектрическими свойствами. Измеряется дифференциальный тепловой поток от температуры и по величине скачков на этой зависимости определяется содержание включений. В предлагаемом способе используется полупроводник арсенида галлия, имеющий галлиевые включения.
Объемный кристаллический галлий может существовать в нескольких метастабильных модификациях, из которых при нормальном давлении устойчива α-модификация, образующаяся при 30°C, и β-модификация, в которую кристаллизуется переохлажденный расплав.
Предлагаемый способ поясняется чертежами, где на фиг.1 - фазовые превращения в β-Ga: а) плавление, б) кристаллизация, в) переход β-Ga в α-Ga; на фиг.2 - дифференциальный микроваттметр с термоэлектрическим охлаждением; на фиг.3 - теплограмма GaAs (пики на кривой соответствуют кристаллизации микровключений β-галлия).
В предлагаемом способе переход включений галлия из стабильной α-фазы в метастабильную β-фазу осуществляется воздействием инфракрасных лазеров с длинами волн 1,06 мкм либо 10,6 мкм. Принципиального различия между структурами галлия, полученными лазерами с разными длинами волн, нет. Это свидетельствует о том, что основную роль при образовании β-фазы играет высокая скорость закалки расплава галлия. Действительно, при воздействии лазерного излучения, температура арсенида галлия за (1-5) секунд повышается на 100-200 градусов выше температуры плавления (в зависимости от условий облучения) примерно с такой же скоростью идет и его охлаждение. Температура плавления галлия в β-фазе составила -16°C (фиг.1а). Температура кристаллизации β-модификации (-25°C) не зависит от температуры перегрева арсенида галлия лазерным лучом и наблюдается явление переохлаждения (фиг.1б). Кроме пиков, связанных с плавлением и кристаллизацией β-галлия, обнаружена низкотемпературная аномалия при -90°C, сопровождающаяся выделением теплоты и обусловленная обратным превращением галлия из β- в α-модификацию (фиг.1в).
Реализация термического анализа веществ по прототипу с использованием дифференциального быстродействующего микрокалориметра в режиме ДСК в производимых условиях сопряжена с некоторыми техническими трудностями, к тому же по методическим причинам чувствительность и разрешение анализа выше при массах анализируемого вещества ≤1 мг, т.е. нет необходимости иметь объемную калориметрическую ячейку. Поэтому для достижения поставленной цели необходимо применение дифференциального быстродействующего (τ=10-2 с) микроваттметра на основе АТЭ из висмута с термоэлектрическим охлаждением.
Схема устройства дифференциального микроваттметра с термоэлектрическим охлаждением представлена на фиг.2.
Прибор состоит из двух сенсорных (тепломерных) площадок 6×10 мм2 на основе последовательно включенных АТЭ из висмута. Сенсоры 1 размещены на рабочей поверхности (S=10×30 мм2) многокаскадного микрохолодильника 2, вторая поверхность которого размещена на термостате 3, находящимся в тепловом контакте с окружающей средой. Многокаскадный микрохолодильник 2 представляет собой термоэлектрическую батарею из p и n-ветвей на основе теллурида висмута; возможно применение серийно выпускаемых термоэлектрических охладителей. Применение термоэлектрического охлаждения обеспечивает охлаждение исследуемого объекта 4 и эталона 5, расположенных на сенсорах 1 до - 100°C. Предусмотрена возможность проведения исследований в вакууме: в термостате 3 имеется сквозное отверстие для откачивания системы до давления 10-2 мм рт.ст., а в верхней части прибора через тефлоновую прокладку установлена стеклянная колба 6. На задней панели термостата 3 через разъем выведены электрические элементы прибора.
Генерируемый термоэлектрический сигнал с сенсоров 1, на которых размещаются исследуемый образец 4 и эталон 5, соответствует кривой dq/dt, которая непосредственно фиксируется на двухкоординатном самописце, например XY-Recorder endim 620/02 от температуры. Скорость изменения температуры образцов 4 и 5 не более ≤1 град/мин. В случае необходимости применяется усилитель постоянного тока, например TR-1452 с уровнем шума ≤0,01 мкВ.
Термический анализ, основанный на ДСК с использованием АТЭ из висмута, способен обеспечить обнаружение микровключений галлия в арсениде галлия. Впервые экспериментально показано, что разрешение теплового спектра при термическом анализе сравнимо по чувствительности с результатами спектрального анализа. При анализе арсенида галлия ≈1 мг, приготовленного в виде порошка, дисперсность которого ≈0,1 мг, зарегистрированы отклики при кристаллизации микровключений β-галлия (фиг.3) на уровне ≈0,15 мкВт, что соответствует массе галлия 10-10 г при относительной чувствительности 10-5%.
Технический результат: способ позволяет достигнуть относительной чувствительности определения галлиевых микровключений на уровне 10-5% и абсолютной чувствительности 10-10 г, что может быть использовано для контроля качества полупроводниковых материалов и управления технологией выращивания совершенных кристаллов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ЛЕГИРУЮЩИХ ДОБАВОК ЗОЛОТА И КОБАЛЬТА В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ НА ОСНОВЕ ДИОКСИДА ОЛОВА | 2017 |
|
RU2649136C1 |
Способ определения содержания примеси в веществах | 1989 |
|
SU1704050A1 |
СПОСОБ РАСПОЗНАВАНИЯ ГАЗООБРАЗНЫХ ВЕЩЕСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2209425C1 |
СПОСОБ СИНХРОННО-СОПРЯЖЕННОГО ТЕРМИЧЕСКОГО АНАЛИЗА ВЕЩЕСТВ И МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2343467C2 |
ТЕРМОСТАТИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ НАНОКАЛОРИМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ НА ЧИПЕ СО СВЕРХБЫСТРЫМИ СКОРОСТЯМИ НАГРЕВА И ОХЛАЖДЕНИЯ | 2015 |
|
RU2620028C1 |
Способ дифференциального термического анализа | 1981 |
|
SU989417A1 |
СПОСОБ ЭПИТАКСИАЛЬНОГО НАРАЩИВАНИЯ ПОЛУПРОВОДНИКОВЫХ ТВЕРДЫХ РАСТВОРОВ | 1988 |
|
SU1559970A1 |
Способ калориметрической калибровки устройства для дифференциального термического анализа | 1983 |
|
SU1137380A1 |
УСТРОЙСТВО ТЕРМОГРАФИЧЕСКОГО БЛОКА ДЛЯ ТЕРМИЧЕСКОГО АНАЛИЗА ПИЩЕВЫХ ЖИРОВ | 2003 |
|
RU2247362C1 |
Дифференциальный сканирующий микрокалориметр | 1981 |
|
SU1068740A1 |
Изобретение относится к термическому анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах. Способ определения содержания металлических включений в полупроводниковых материалах заключается в охлаждении предварительно нагретых исследуемого и эталонного веществ, помещенных на сенсорах из анизотропных элементов с термоэлектрическими свойствами. Измеряют дифференциальный тепловой поток от температуры и по величине скачков на этой зависимости определяют искомую величину. При этом эталон и исследуемый образец, приготовленный в виде порошка массой ≤1 мг с дисперсностью ≈0,1 мг, располагают непосредственно на тепловых сенсорах. Нагревают воздействием инфракрасного лазера с длиной волны 10,6 мкм в течение 1-5 секунд на 100-200 градусов выше температуры плавления микровключений галлия. Затем с такой же скоростью осуществляют закалку расплава галлия с образованием жидкой фазы β-Ga. Далее снимают искомую зависимость при термоэлектрическом охлаждении в области температур кристаллизации фазы β-Ga при температуре -25°C и при превращении β-Ga в α-Ga при температуре -90°C. Технический результат - повышение чувствительности определения галлиевых микровключений для контроля качества полупроводниковых материалов. 3 ил.
Способ определения содержания металлических включений в полупроводниковых материалах, заключающийся в охлаждении предварительно нагретых исследуемого и эталонного веществ, помещенных на сенсорах из анизотропных элементов с термоэлектрическими свойствами, при этом измеряют дифференциальный тепловой поток от температуры и по величине скачков на этой зависимости определяют искомую величину, отличающийся тем, что эталон и исследуемый образец, приготовленный в виде порошка массой ≤1 мг с дисперсностью ≈0,1 мг, располагают непосредственно на тепловых сенсорах, нагревают воздействием инфракрасного лазера с длиной волны 10,6 мкм в течение 1-5 секунд на 100-200 градусов выше температуры плавления микровключений галлия и затем с такой же скоростью осуществляют закалку расплава галлия с образованием жидкой фазы β-Ga, далее снимают искомую зависимость при термоэлектрическом охлаждении в области температур кристаллизации фазы β-Ga при температуре -25°C и при превращении β-Ga в α-Ga при температуре -90°C.
Способ определения содержания примеси в веществах | 1989 |
|
SU1704050A1 |
ШЛЯХОВА А.Г., "ДИФФЕРЕНЦИАЛЬНО-СКАНИРУЮЩАЯ КАЛОРИМЕТРИЯ ДЛЯ КОНТРОЛЯ КАЧЕСТВА АРСЕНИДА-ГАЛЛИЯ", Проблемы энергетики, 2006, N11-12, стр.104-107 | |||
ШЛЯХОВА А.Г., ГАЛИМОВ Э.Р., ШЛЯХОВ А.Т., "РАЗРАБОТКА ВЫСОКОЧУВСТВИТЕЛЬНЫХ И БЫСТРОДЕЙСТВУЮЩИХ КАЛОРИМЕТРИЧЕСКИХ УСТРОЙСТВ ДЛЯ ИЗУЧЕНИЯ ТЕПЛОВЫХ ПРОЦЕССОВ", Проблемы энергетики, 2007, N3-4, стр.125-129 | |||
Способ определения температуры, кристаллизации аморфного теллура и бинарных сплавов на его основе | 1989 |
|
SU1755147A1 |
US 5185273 A , 09.02.1993 |
Авторы
Даты
2015-08-27—Публикация
2014-03-24—Подача