Предлагаемое изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей).
Известно интегрированное устройство (система) опознавания [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И Меркулова. - М.: Радиотехника, 2006, с. 644-650], содержащее набор (блок) информационных каналов: канал координатно-связного опознавания; канал радиолокационного опознавания; канал на основе информации, получаемой по радиолокационным изображениям; каналы радиолокационного и оптико-электронного распознавания; канал радиотехнической разведки; канал тактического опознавания. Выход каждого из информационных каналов подключен к соответствующему входу процессора обработки данных, выход которого является выходом устройства.
Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал выделяет и оценивает соответствующие признаки. Эти признаки поступают в процессор обработки данных, который в соответствии с реализованным в нем алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
К недостаткам данного устройства можно отнести то, что не используются возможности информационных каналов по выработке частных решений в различных алфавитах.
Известно также интегрированное устройство (система) опознавания [Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода. - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74], которое содержит пять информационных каналов (подсистем): прямого опознавания, координатно-связного опознавания, радиолокационного распознавания, оптико-электронного распознавания и радиотехнического распознавания, а также быстродействующую цифровую вычислительную систему (БЦВС).
Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал в соответствии с заложенными в нем принципами формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Частные решения информационных каналов поступают в БЦВС, которая в соответствии с реализованным в ней алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
Недостатками этого устройства является ограниченное число информационных каналов, а также отсутствие учета достоверности вырабатываемых ими частных решений, что снижает достоверность принятого на их основе общего решения.
По техническому решению наиболее близким к предлагаемому изобретению является интегрированное устройство опознавания воздушных целей [Жиронкин С.Б., Макарычев А.В. Интегрированное устройство опознавания воздушных целей. Патент №2452975 от 10 июня 2012 г. Опубликован 10.06.2012 г. Бюллетень №16], которое и выбрано в качестве прототипа. Устройство содержит быстродействующую цифровую вычислительную систему (БЦВС), а также следующие N-канальные блоки: блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц.
Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал по критерию идеального наблюдателя формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Информационные каналы выдают не только частные решения
где
m - номер класса объектов в алфавите общих решений
qt - номер типа (класса) объекта в алфавите частных решений t - го информационного канала
Qt - количество типов (классов) объектов в алфавите частных решений t - го информационного канала (объем алфавита);
P(qt/m) - априорная вероятность отнесения объекта t-м информационным каналом к типу (классу) с номером qt при условии, что объект принадлежит классу с номером m в алфавите общих решений;
М - количество классов объектов в алфавите общих решений (M=2 при опознавании «Свой», «Чужой»);
N - количество информационных каналов.
Повышение достоверности опознавания на основе мягких решений происходит за счет того, что вероятности
Оптимальное по критерию Неймана-Пирсона общее решение формируется в БЦВС на основе функции правдоподобия
и решающего правила
где отношение правдоподобия l определяется выражением
а порог h выбирается по заданной вероятности неправильного опознавания «чужого» объекта (m=2) как «своего» (m*=1).
В качестве примера рассмотрим процесс формирования общего решения прототипом в составе пяти (N=5) информационных каналов при следующих исходных данных:
1) количество классов объектов в основном алфавите М=2;
2) алфавиты частных решений первых двух информационных каналов совпадают с алфавитом общих решений, то есть Q1=Q2=М=2;
3) алфавиты остальных каналов не совпадают между собой, но имеют одинаковый объем, то есть Q3=Q4=Q5=5.
Рассмотрим первый информационный канал (t=1; Q1=M=2). Пусть в этом канале сформирована следующая совокупность апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами
{P(q1)}={P(q1=1); P(q1=2)}={0,51; 0,49}.
Тогда в соответствии с критерием идеального наблюдателя
и в первом канале будет принято частное решение
Матрица-столбец условных вероятностей (2) принимает вид
Допустим, что на основе информации целеуказания, полученной от внешних источников, сформирована матрица априорных вероятностей
Тогда в соответствии с (1) по правилу перемножения матриц получим
Аналогично формируются матрицы
Подставив значения
Тогда в соответствии с решающим правилом (4) при h=1,05 будет принято общее решение m*=1, то есть наблюдаемый объект «Свой».
Отношение правдоподобия может быть представлено в виде произведения частных отношений правдоподобия
В прототипе все информационные каналы принимают частные решения по критерию идеального наблюдателя. Однако реально некоторые из них (например, подсистемы прямого и координатно-связного опознавания) принимают частные решения по критерию Неймана-Пирсона. Отсутствие учета особенностей таких информационных каналов снижает достоверность принятого на их основе общего решения, что является серьезным недостатком прототипа.
Целью изобретения является повышение достоверности опознавания объектов (целей) путем устранения указанного недостатка.
Цель изобретения достигается тем, что в известное устройство, содержащее N-канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки:
блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников устройства, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания, входы уменьшаемого которого соединены с третьими дополнительными выходами блока информационных каналов, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, выходы которого соединены с информационными входами второго блока ключей, дополнительно введен L-канальный второй блок информационных каналов, выход решения каждого из которых подключен к соответствующему входу БЦВС, а выходы подключены к ее соответствующим дополнительным входам.
Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается тем, что содержит дополнительно введенный L-канальный блок информационных каналов, а также дополнительные связи между ним и БЦВС. Этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и которые в отличие от прототипа принимают частные решения по критерию Неймана-Пирсона.
Таким образом, заявляемое устройство соответствует критерию изобретения «новизна».
Сравнение заявляемого решения с другими техническими решениями показывает, что вновь введенный блок известен [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: Радиотехника, 2006, с. 644-650; Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода. - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74].
Однако при его введении в указанной связи с БЦВС в заявляемое устройство оно проявляет новые свойства, что приводит к повышению достоверности принятого решения о государственной принадлежности объекта. Это позволяет сделать вывод о соответствии технического решения критерию «существенные отличия».
Блок-схема устройства представлена на фиг.
Устройство содержит:
1 - блок информационных каналов (в составе N каналов), выходы решений которого подключены к соответствующим входам БЦВС 11 и первым входам блока сравнения 2. Первые, вторые и третьи дополнительные выходы блока 1 соединены соответственно со вторыми входами блока сравнения 2, со входами вычитаемого первого блока вычитания 3 и входами уменьшаемого второго блока вычитания 4. Кроме того, вторые дополнительные выходы блока 1 подключены к информационным входам первого блока ключей 5. Этот блок объединяет каналы, принимающие частные решения по критерию идеального наблюдателя.
2 - блок сравнения (в составе N схем сравнения на два входа и два выхода каждая), первые и вторые входы которого подключены соответственно к выходам решений и первым дополнительным выходам блока информационных каналов 1. Первые и вторые выходы блока сравнения 2 соединены соответственно с управляющими входами первого 5 и второго 6 блоков ключей.
3 - первый блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены ко вторым дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания 4. Выходы первого блока вычитания 3 подключены ко входам делимого блока деления 7.
4 - второй блок вычитания (в составе N схем вычитания на два входа каждая), входы уменьшаемого которого подключены к третьим дополнительным выходам блока информационных каналов 1, а входы вычитаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого первого блока вычитания 3. Выходы второго блока вычитания 4 подключены ко входам делителя блока деления 7.
5 - первый блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены к первым выходам блока сравнения 2, информационные входы - ко вторым дополнительным выходам блока информационных каналов 1, а выходы подключены к первым входам блока схем ИЛИ 8.
6 - второй блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены ко вторым выходам блока сравнения 2, информационные входы - к выходам блока деления 7, а выходы подключены ко вторым входам блока схем ИЛИ 8.
7 - блок деления (в составе N схем деления на 2 входа каждая), входы делимого и делителя которого подключены соответственно к выходам первого 3 и второго 4 блоков вычитания, а выходы - к информационным входам второго блока ключей 6.
8 - блок схем ИЛИ (в составе N схем ИЛИ на два входа каждая), первые и вторые входы которого подключены соответственно к выходам первого 5 и второго 6 блоков ключей, а выходы - ко вторым входам (входам множителя) блока умножения матриц 9.
9 - блок умножения матриц (в составе N схем умножения матриц на два входа каждая), первые входы которого (входы множимого) являются входами внешних источников, вторые входы (входы множителя) подключены к выходам блока схем ИЛИ 8, а выходы - к дополнительным входам БЦВС 11.
10 - второй блок информационных каналов (в составе L каналов), выход решения каждого из которых подключен к соответствующему входу БЦВС 11, а выходы подключены к ее соответствующим дополнительным входам. Этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающие частные решения по критерию Неймана-Пирсона.
11 - быстродействующая цифровая вычислительная система (БЦВС), входы которой подключены к выходам решений блоков информационных каналов 10 и 1, дополнительные входы - к выходам второго блока информационных каналов 10 и блока умножения матриц 9, а выход является выходом устройства.
Устройство работает следующим образом. Каждый из информационных каналов блока 1 (дальше рассматривается работа только одного t-го канала и его связи с другими блоками) в рамках своего алфавита вырабатывает частное решение о принадлежности объекта к определенному типу (классу) в виде его номера
Для лучшего понимания отличий предлагаемого устройства от прототипа рассмотрим процесс принятия общего решения предлагаемым устройством на конкретном примере при следующих исходных данных:
1) количество классов объектов в основном алфавите М=2;
2) в состав второго блока информационных каналов 10 входят L=2 канала
3) в состав блока информационных каналов 1 входят N=3 канала
Все остальные цифровые данные совпадают с примером для прототипа.
Рассмотрим первый и второй информационные каналы. Пусть в этих каналах сформированы матрицы апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами
Для принятия частного решения по критерию Неймана-Пирсона в каждом из этих каналов формируется частное отношение правдоподобия
каждое из которых сравнивается со своим заданным порогом. Пусть эти пороги одинаковы и равны h1=h2=1,05.
Поскольку l1=1,041 < h1=1,05;
l2=0,111 < h2=1,05,
то в обоих каналах будут приняты одинаковые частные решения
q1 *=2 (объект «чужой»); P(q1 *)=P(q1=2)=0,49;
q2 *=2 (объект «чужой»); P(q2 *)=P(q2=2)=0,90. Отметим, что в прототипе первым каналом было бы принято частное решение q1 *=1 (объект «свой»); P(q1 *)=P(q1=1)=0,51.
Эти частные отношения правдоподобия включаются в общее отношение правдоподобия, рассчитываемое БЦВС, и для рассматриваемого примера получим
и в соответствии с решающим правилом (4) будет принято общее решение m*=2, то есть наблюдаемый объект «Чужой».
Следовательно, отсутствие в прототипе учета особенностей принятия частных решений первыми двумя каналами привело к принятию противоположного общего решения, что свидетельствует об его низкой достоверности.
Таким образом, для каналов, принимающих частное решение по критерию Неймана-Пирсона, матрицы
название | год | авторы | номер документа |
---|---|---|---|
ИНТЕГРИРОВАННОЕ УСТРОЙСТВО ОПОЗНАВАНИЯ | 2015 |
|
RU2597870C1 |
Интегрированная система опознавания | 2016 |
|
RU2608573C1 |
ИНТЕГРИРОВАННОЕ УСТРОЙСТВО ОПОЗНАВАНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ | 2010 |
|
RU2452975C1 |
Комплексная система обнаружения в многопозиционной радиолокационной станции | 2016 |
|
RU2608556C1 |
СПОСОБ КООРДИНАТНО-СВЯЗНОГО ОПОЗНАВАНИЯ С ПРИМЕНЕНИЕМ СТАТИСТИЧЕСКОЙ ОЦЕНКИ РАЗНОСТИ ПРОСТРАНСТВЕННЫХ КООРДИНАТ | 2011 |
|
RU2461019C1 |
КОМПЛЕКСНОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ В МНОГОПОЗИЦИОННОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИИ | 2014 |
|
RU2556710C1 |
КОМПЛЕКСНОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ | 2015 |
|
RU2587161C1 |
Двухканальное устройство обнаружения | 2022 |
|
RU2791090C1 |
Комплексное устройство обнаружения воздушных объектов | 2023 |
|
RU2816190C1 |
УСТРОЙСТВО ДЛЯ СОДЕРЖАТЕЛЬНОГО АНАЛИЗА ТЕКСТОВОЙ ИНФОРМАЦИИ | 2014 |
|
RU2568272C2 |
Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей). Достигаемый технический результат - повышение достоверности опознавания объектов. Указанный результат достигается за счет того, что заявленное устройство содержит два блока информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ, блок умножения матриц и быстродействующую цифровую вычислительную систему (БЦВС), при этом связи второго блока информационных каналов с БЦВС позволяют учесть особенности объединяемых во второй блок информационных каналов, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающих частные решения по критерию Неймана-Пирсона, что приводит к повышению достоверности общего решения. 1 ил., 2 табл.
Интегрированное устройство опознавания, содержащее N-канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки: блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников устройства, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания, входы уменьшаемого которого соединены с третьими дополнительными выходами блока информационных каналов, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, выходы которого соединены с информационными входами второго блока ключей, отличающееся тем, что в него дополнительно введен L-канальный второй блок информационных каналов, выход решения каждого из которых подключен к соответствующему входу БЦВС, а выходы подключены к ее соответствующим дополнительным входам, причем этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающие частные решения по критерию Неймана-Пирсона.
ИНТЕГРИРОВАННОЕ УСТРОЙСТВО ОПОЗНАВАНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ | 2010 |
|
RU2452975C1 |
СПОСОБ ГРУППОВОГО ОПОЗНАВАНИЯ ОБЪЕКТОВ ("СВОЙ-ЧУЖОЙ") И ОБЕСПЕЧЕНИЯ ЦЕЛЕУКАЗАНИЯ НА ОСНОВЕ БЕСПРОВОДНОЙ СИСТЕМЫ ПОЗИЦИОНИРОВАНИЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ И ИНТЕЛЛЕКТУАЛЬНЫХ РАДАРОВ | 2009 |
|
RU2507538C2 |
УСТРОЙСТВО ОБНАРУЖЕНИЯ И ОПОЗНАВАНИЯ ЦЕЛЕЙ | 1984 |
|
RU2121700C1 |
СИСТЕМА ОПОЗНАВАНИЯ "СВОЙ-ЧУЖОЙ" | 2001 |
|
RU2191403C1 |
СИСТЕМА ОБНАРУЖЕНИЯ И ОПОЗНАВАНИЯ | 1996 |
|
RU2100823C1 |
US 6466710 B1, 15.10.2002 | |||
EP 689150 B1, 29.03.2000 | |||
KR 2013125216 A, 18.11.2013 |
Авторы
Даты
2015-09-10—Публикация
2014-04-18—Подача