Изобретение относится к области экологии, оно направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. В результате разделения изотопов урана получается две фракции: обогащенная с содержанием изотопа 235U больше 0,72% масс. и отвальная, в которой содержится 0,1-0,3% масс. 235U.
Отвального гексафторида урана в России накопилось более 700 тысяч тонн, а в мире более 1,5 млн тонн.
Отвальный гексафторид урана хранится в контейнерах, преимущественно на открытых площадках. Это представляет значительную опасность для природы и населения. В результате коррозии при длительном хранении, действии природных явлений - гроза, землетрясение, а также диверсий и бомбардировок может нарушиться герметичность части контейнеров и в окружающую среду выйдет гексафторид урана - радиоактивный ядовитый газ, обладающий удушающим действием, что может привести к массовому отравлению населения
Известен способ конверсии гексафторида урана в тетрафторид урана и безводный фтороводород, и устройство для его осуществления (патент RU №2188795 от 23.11.2000). Изобретение используют для переработки обедненного гексафторида урана. Способ заключается во взаимодействии гексафторида урана с водородом во фтороводородном пламени. Процесс ведут в реакторе при давлении в нем 540-720 мм рт. ст. Мольное соотношение компонентов UF6:F2:Н2 = 1:(0,12-0,36):(1,5-3). В качестве восстановителя используют катодный газ.
Температуру стенок реактора поддерживают около 480°C. Охлаждение продуктов реакции осуществляют путем охлаждения стенок реактора. Порошок тетрафторида урана шнеком-питателем разгрузочного устройства перемещают в приемник готового продукта. Корпус разгрузочного устройства выполнен в виде вертикального овала. Фтористый водород из технологических газов конденсируют при температуре (-35)-(-40)°C и при (-70)-(-80)°C. Дополнительно извлекают HF фторидом натрия при температурах 70-80°C и 20-30°C. Десорбцию фтористого водорода ведут при температуре 350-375°C. Результат изобретения: степень превращения гексафторида урана в тетрафторид урана до 99,5%. Степень извлечения фтористого водорода до 99,6%.
Недостаток способа - конечным продуктом является порошкообразный продукт - тетрафторид урана, который при аварии загрязняет и атмосферу, и гидросферу.
Известен способ получения порошка диоксида урана из гексафторида урана (пат. RU 2381993 от 16.01.2008), включающий подачу в предварительно разогретую реакционную зону реакционной камеры гексафторида урана и водяного пара, подачу во вторую реакционную зону реакционной камеры смеси водяного пара и водорода с переводом в этой зоне уранилфторида до диоксида урана, выгрузку порошка из реакционной камеры до восстановления непрореагировавшего уранилфторида. Полученный порошок охлаждают и стабилизируют смесью воздуха и азота.
Недостатки данного способа - многостадийность операций, получение конечного продукта в виде порошка, что усложняет его хранение и дает возможность загрязнения окружающей среды.
Известен способ конверсии обедненного гексафторида урана в оксид урана (U3O8) путем высокотемпературного пирогидролиза [Proven managemen for flepleted uranium: the French reference of Cogema′s defluorination plant / P. Netter, B. Dupperret, B. Le Motais. - International Conferences "Decomissioning, decontamination and reutilization of commercial and government facilities". Knoxville, USA, September 12-16, 1999. - 11 p.].
Недостаток способа - высокая энергоемкость процесса, а также получение конечного продукта в виде порошка, что может ухудшить экологическую обстановку в случае повреждения упаковки.
Известен способ восстановления гексафторида урана (Патент RU №2204529 от 28.03.2001). Изобретение относится к способам восстановления гексафторида урана до низших фторидов и металлического урана и может быть использовано при переработке обедненного гексафторида урана. Результат способа: возможность получения продукта заданного состава и осуществление реакции восстановления гексафторида урана при более низкой температуре. Восстановление гексафторида UF6 осуществляют предварительно атомизированным водородом в химическом реакторе в смеси с буферным газом-разбавителем в режиме непрерывного самопроизвольного горения. Атомарный водород получают при смешении в потоке молекулярного водорода в избытке молекулярного фтора, поджигаемого в блоке горелок, так что избыток молекул фтора термически диссоциирует на атомы фтора. Восстановление UF6 осуществляется до металлического урана при соотношении концентраций атомарного водорода и молекул UF6 в смеси, подаваемой в реактор, 6:1 соответственно. Восстановление гексафторида UF6 осуществляют до тетрафторида урана при соотношении концентраций атомарного водорода и молекул UF6 в смеси, подаваемой в реактор, 2:1 соответственно. Результат способа: возможность получения продукта заданного состава и осуществление реакции восстановления гексафторида урана при более низкой температуре.
Недостаток способа - металлический уран получается в виде мелкодисперсного пирофорного порошка, не пригодного для хранения.
Известен способ переработки гексафторида урана в тетрафторид урана (Ф.С. Паттон, Д.М. Гуджин, В.Л. Гриффитс «Ядерное горючее на основе обогащенного урана», Атомиздат, М., 1966, стр. 42-47). Согласно этому способу, через сопло типа «труба в трубе» по его внешней части в реактор подается водород, а затем через внутреннюю часть сопла начинают подавать смесь гексафторида урана и фтора, причем фтор подается для достижения нужного температурного режима. Происходят следующие реакции:
UF6(газ)+H2(газ)→UF4(газ)+2HF(газ), ΔH329=-280 кДж/моль
F2(газ)+H2(газ)→2HF(газ), ΔH298=-268 кДж/моль
Избыток водорода 100-500%, расход фтора 20-32 г/кг UF6, 90% полученного UF4 оседает в нижнем бункере, UF4, унесенный газами, улавливают металлокерамическими фильтрами.
Недостатком данного способа является получение сыпучего порошкообразного продукта сравнительно малой плотности (ρ(UF4)=6,7 г/см3), что затрудняет условия его хранения.
Известен способ конверсии отвального гексафторида урана в металлический уран (пат. RU №2444475 от 29.07.2010 г. ), принятый за прототип. Способ предусматривает взаимодействие гексафторида урана с металлическим кальцием.
При проведении процесса газообразный гексафторид урана вводят в расплав металлического кальция путем барботажа. Для получения компактного слитка урана температуру процесса поддерживают выше температуры плавления фторида кальция.
Недостатки способа - высокая температура начала процесса - выше 842°C, это выше температуры плавления кальция, высокая стоимость металлического кальция 4000 долларов за тонну, высокая температура процесса - выше температуры плавления фторида кальция - 1418°C, дефицит металлического кальция.
Задача изобретения - превращение токсичного гексафторида урана в нелетучий компактный продукт - слиток металлического урана, не обладающий высокопроницающей гамма-активностью.
Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим натрием. Исходные компоненты подают в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°C до 1705°C.
Процесс проводят путем соединения в стехиометрическом соотношении в реакторе восстановления газообразного гексафторида урана с распыленным жидким металлическим натрием по реакции:
UF6+6Na=U+6NaF
Реакция необратима, так как изменение свободной энергии Гиббса составляет большую отрицательную величину -1238 кДж/моль.
В ходе реакции выделяется значительное количество тепла - ΔН°298=-1256,4 кДж/моль. Теоретическая температура процесса 2561°C. Большое значение теплового эффекта реакции указывает на то, что процесс проходит без подвода тепла извне и то, что продукты реакции будут находиться в расплавленном состоянии. Температуру процесса для получения компактного слитка урана за счет охлаждения продуктов реакции поддерживают выше температуры плавления урана 1133°C и ниже температуры кипения фторида натрия 1705°C, чтобы предупредить повышения давления в реакторе.
Преимущества предлагаемого способа:
- температура начала реакции натрийтермии (98°C) гораздо ниже, чем кальцийтермии (842°C);
- нижний температурный предел натрийтермии определяется температурой плавления урана, а кальцийтермии - температурой плавления фторида кальция (1418°C), то есть кальцийтермия более энергозатратна;
- стоимость восстановителя при натрийтермии (Na 99,7% - 3000 долл/тонну) ниже, чем при кальцийтермии (Ca 98,5% - 4000 долл/тонну), для получения 1 кг урана по стехиометрии требуется 0,58 кг натрия стоимостью 1,74 доллара, а при кальцийтермии - 0,5 кг кальция стоимостью 2 доллара, то есть больше на 0,26 доллара/кг урана;
- оборудование будет работать при более мягком температурном режиме, что снизит скорость коррозии;
- полученный фтористый натрий может быть использован как интенсивный антисептик или для получения фтороводорода, а также как сорбент.
Пример
В предварительно вакуумированный аппарат, представляющий собой цилиндрический сосуд, футерованный внутри, одновременно подают в стехиометрическом соотношении газообразный гексафторид урана и жидкий металлический натрий, распыленный через форсунки. Процесс идет с образованием жидких фаз (фторида натрия и металлического урана), что создает вакуум в реакторе, улучшающий диспергирование жидкого натрия. Небольшой избыток натрия вводится в реактор в конце процесса для обеспечения полного восстановления гексафторида урана и высокого выхода урана в слиток.
Температуру процесса поддерживают от 1133°C (температура плавления урана) до 1705°C (температура кипения NaF). В этом диапазоне температур продукты реакции находятся в жидком состоянии, что положительно сказывается на их ликвации и формировании слитка урана, упругость паров фтористого натрия составляет менее 1 атмосферы.
Жидкие продукты реакции в соответствии с их плотностями распределяются следующим образом: нижний слой - расплав металлического урана, верхний слой - расплав фторида натрия. Избыток натрия находится в парообразном состоянии в свободном объеме реактора.
После охлаждения и кристаллизации продукты реакции извлекаются из реактора и разделяются: слиток металлического урана - на хранение, шлак - на использование в качестве сорбента, антисептика, сырья для получения фтороводорода, а металлический натрий - на повторное использование.
На получение 100 г урана в слитке требуется 150 г UF6, 61 г металлического натрия, при этом получается в шлаке 106 г NaF.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНВЕРСИИ ОТВАЛЬНОГО ГЕКСАФТОРИДА УРАНА В МЕТАЛЛИЧЕСКИЙ УРАН | 2010 |
|
RU2444475C1 |
СПОСОБ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА НА МЕТАЛЛИЧЕСКИЙ УРАН И БЕЗВОДНЫЙ ФТОРИД ВОДОРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2120489C1 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА ДО ТЕТРАФТОРИДА УРАНА И БЕЗВОДНОГО ФТОРИДА ВОДОРОДА | 2015 |
|
RU2594012C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ ГЕКСАФТОРИДА УРАНА | 2001 |
|
RU2204529C2 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА В ТЕТРАФТОРИД УРАНА И БЕЗВОДНЫЙ ФТОРИСТЫЙ ВОДОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2188795C2 |
СПОСОБ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2453620C1 |
СПОСОБ ФТОРИРОВАНИЯ МЕТАЛЛИЧЕСКОГО УРАНА ДО ГЕКСАФТОРИДА УРАНА | 1997 |
|
RU2111169C1 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА | 1998 |
|
RU2203225C2 |
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА УРАНА | 2007 |
|
RU2355641C1 |
СПОСОБ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА | 1991 |
|
RU2090510C1 |
Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим натрием, при этом исходные компоненты подают в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°С до 1705°С. Изобретение обеспечивает эффективную конверсию гексафторида урана. 1 пр.
Способ конверсии отвального гексафторида урана в металлический уран, включающий взаимодействие гексафторида урана с металлическим натрием, отличающийся тем, что исходные компоненты подаются в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°C до 1705°C.
СПОСОБ КОНВЕРСИИ ОТВАЛЬНОГО ГЕКСАФТОРИДА УРАНА В МЕТАЛЛИЧЕСКИЙ УРАН | 2010 |
|
RU2444475C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ ГЕКСАФТОРИДА УРАНА | 2001 |
|
RU2204529C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА МЕТОДОМ ПИРОГИДРОЛИЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2381993C2 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА В ТЕТРАФТОРИД УРАНА И БЕЗВОДНЫЙ ФТОРИСТЫЙ ВОДОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2188795C2 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
2015-09-10—Публикация
2014-04-09—Подача