СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОГО СРЕДСТВА ИЗ ГОЛОТУРИЙ, ОБЛАДАЮЩЕГО ОБЩЕУКРЕПЛЯЮЩИМИ И ИММУНОМОДУЛИРУЮЩИМИ СВОЙСТВАМИ Российский патент 2015 года по МПК A61K35/56 A61P37/02 

Описание патента на изобретение RU2562581C1

Изобретение относится к пищевой промышленности и может быть использовано для получения биологически активного продукта из дальневосточных промысловых голотурий кукумарии Cucumaria japonica и дальневосточного трепанга Apostichopus japonicus, содержащего гидролизованный коллаген и тритерпеновые гликозиды.

Известно, что мышечная ткань голотурий содержит большое количество коллагена, который участвует в регенерации клеток и поддержании структуры и функции соединительных тканей [Попов A.M., Артюков А.А., Глазунов В.П. и др. Противоопухолевая и антикоагулянтная активность коллагенового белка из голотурии Apostichopus japonicus, модифицированного протеолитическими ферментами // Биология моря. 2011. Т. 37, №3. С.217-222].

Тритерпеновые гликозиды (сапонины) голотурий проявляют широкий спектр биологической активности. Результаты исследований комплекса гликозидов, выделенных из Cucumaria frondosa, показали, что эти соединения проявляют противоопухолевую и иммуномодулирующую активности, эффективность которой зависит от дозы. Данные о безопасности для организма человека низких концентраций этих соединений позволяют считать перспективным разработку на их основе биологически активных пищевых добавок [http://otherreferats.allbest.ru/medicine/00149623_0.html]. Низкомолекулярный коллаген и гексозамины являются предшественниками макромолекул суставного хряща и их введение вызывает стимулирующее действие и облегчает регенерацию хрящевой ткани за счет использования готового строительного материала и способности накапливаться в очагах воспаления [Boonen S., Aerssens J., Mbuyi-Muamba J.M., Dequeker J. Generalized osteoarthritis protecting against osteoporetic fractures: review of the evidence. J Orthopaedic Rheumatol. 1996. V.9. P.69-73;. Маршалл В. Дж., Клиническая биохимия / В.Д. Маршалл; под ред. Н. Новикова. - М.: БИНОМ; СПб.: Невский диалект, 1999. - 367 с.].

Известен способ получения адаптогена (Патент РФ 2255747). Способ заключается в том, что выполняют деструкцию и гидролиз морского животного сырья из группы, включающей морского ежа, краба, трепанга, мидий, кальмара, белухи, с последующим отделением цитоплазматической фракции и добавлением раствора соли поливалентного металла пищевой кислоты, а затем проводят коррекцию кислотности, сушку и преобразуют в форму, пригодную для хранения. Недостаток заявленного решения заключается в многостадийности процесса получения конечного продукта и низком содержании коллагена в нем.

Известен способ комплексной переработки голотурий (Патентная заявка РФ №2002120596), при котором голотурии разделывают, удаляют внутренности, венчики и внутрибрюшную пленку и варят в морской, пресной или подсоленной воде в течение 5-15 мин при соотношении 1:1 или 1:2 (по массе). Варку в одной и той же варочной среде новых порций сырья проводят от 3 до 5 раз, получая полуфабрикат для изготовления пищевой продукции, подбирая кратность варки таким образом, чтобы в варочных водах количество сухих веществ составляло от 4 до 10%, сушку термически обработанной кукумарии производят при температуре от 10 до 65°C до содержания воды в продукте - 5-12% с получением полуфабриката для производства пищевого продукта. Варочные среды собирают и высушивают на сушильной установке любого типа при температуре 40-120°C до содержания воды 5-12% с получением биологически активной добавки к пище "Акмар". Полученный продукт используют как адаптогенное средство в виде порошка, таблеток, а также в капсулированной форме. Биологически активная добавка "Акмар" представляет собой порошок серого с различными оттенками коричневого цвета, полученный из высушенных варочных вод при комплексной переработке голотурии, и состоит из белка - 32,0-42,0%, воды - 5,0-12,0%, минеральных веществ - 50,0-55,0%, липидов - 0,05-0,2%, сумма тритерпеновых гликозидов находится в пределах 5000-7000 мкг/г, аминосахаров - 0,5-2,0%.

Недостаток данного способа заключается в том, что не достигается перехода коллагена в варочные воды, а в мышечной ткани он содержится в негидролизованном высокомолекулярном состоянии и соответственно не растворим.

Известен способ получения средства животного происхождения, обладающего антикоагулянтным действием (Патент РФ 2302250). Изобретение раскрывает антикоагулянтное средство, представляющее фрагмент коллагена с молекулярной массой около 12 кДа, дополнительно содержащий 10,0-12,0% углеводов, 6,0-7,5% сульфатных групп, микро- и макроэлементы. Способ получения средства заключается в гомогенизации, экстрагировании дистиллированной водой при рН 8,0-8,5, далее в обработке экстракта ферментным препаратом при температуре 35-37°C при рН 7,5-8,5 в течение 3,5-4,5 ч, затем добавлении к охлажденной до комнатной температуры смеси этанола до содержания его в экстракте 40% и далее отделении сформировавшегося нитевидного осадка путем отжима на фильтре, последовательной промывке 40% и 96% этанолом и сушке, далее продукт растворяют в 0,05-0,1 М растворе бикарбоната натрия, затем повторяют ферментолиз в тех же условиях; к полученному раствору добавляют этанол до его конечной концентрации центрации 50%; осадок отжимают на тканевом фильтре, промывают 50% раствором этилового спирта в дистиллированной воде, а затем 96% этиловым спиртом и сушат на воздухе; далее продукт растворяют в воде и осаждают кислотой, осадок отделяют центрифугированием, растворяют в бикарбонате натрия, затем раствор, содержащий белок, подвергают диализу или ультрафильтрации на мембране, пропускающей вещества с молекулярной массой 15 кДа, после этого обессоленный раствор белка отделяют, пропуская через стерилизующую мембрану с размером пор 0,2 мкм, далее собирают белковую фракцию, проходящую через мембрану, и целевой продукт высушивают.

Недостатками данного способа следует признать сложность, многостадийность процесса, а также применение органических растворителей, при экстракции которыми происходит потеря тритерпеновых гликозидов.

Наиболее близким к техническому решению является способ получения гидролизатов из кукумарии (Патент РФ №2095000 «Способ получения гидролизата из гидробионтов, способ приготовления кисломолочного продукта и способ определения количества тритерпеновых гликозидов»), включающий измельчение очищенного мускульного мешка, смешивание с водой, добавление к измельченному сырью протеолитического фермента из внутренностей краба в количестве 1000-3500 ПЕ на 1 кг кукумарии, 3% поваренной соли и 0,1% бензойнокислого натрия, проведение гидролиза при температуре 30-45°С в течение 14-24 ч, с последующей инактивацией фермента нагреванием и отделением жидкой части путем фильтрации.

Недостатками данного способа является большая длительность процесса ферментолиза, добавление консервантов, а также отсутствие сведений о содержании в жидкой части продукта, отделяемой от гидролизата, коллагена, в том числе низкомолекулярного.

Задача заявляемого решения - разработка нового эффективного способа получения биологически активного средства из голотурий, обладающего общеукрепляющими и иммуномодулирующими свойствами, содержащего и тритерпеновые гликозиды, и низкомолекулярный коллаген, при существенном сокращении времени приготовления готового препарата и расширение спектра биологически активных веществ, получаемых из промысловых голотурий

Для решения поставленной задачи в способе получения биологически активного средства из голотурий, обладающего общеукрепляющими и иммуномодулирующими свойствами, включающем измельчение сырья - очищенного мускульного мешка, смешивание сырья с водой, обработку протеолитическим ферментом, инактивацию фермента, фильтрацию и сушку, согласно изобретению измельченное сырье смешивают с водой в соотношении 1:3-1:5, перед ферментативным гидролизом обрабатывают ультразвуком мощностью 150-200 Вт/см3 в течение 5-15 мин, а ферментативный гидролиз осуществляют ферментными препаратами протеолитического действия: или протамекс, или мегатерин, или эспераза, или савиназа в количестве 1,5-3 П/Е на 1 г сырья, при pH 7,9-8,1 в течение 2,5-3,5 ч.

Способ осуществляют следующим образом:

Свежевыловленное или замороженное сырье - промысловые голотурии освобождают от внутренних органов, которые направляют на получение препаратов, содержащих каротиноиды. Очищенный мускульный мешок измельчают до однородного состояния на волчке или мясорубке с диаметром отверстий решетки 2,0 мм. Измельченное сырье смешивают с водой в соотношении сырье:вода 1:3-1:5, проводят обработку ультразвуком при мощности 150-200 Вт/см3 в течение 3-15 мин для подавления микробиологических процессов, увеличения степени измельчения сырья и разрушения структур тканевого уровня. Доводят pH экстракта до 7,9-8,1 с помощью 0,1 М раствора едкого натра. Затем проводят ферментативный гидролиз, применяя протеолитические ферментные препараты или протамекс, или эсперазу, или савиназу в соотношении 1,5-3 П/Е на 1 г сырья. Условия ферментолиза: температура 35-42°С, время 2,5-3,5 ч. По окончании ферментолиза экстракт выдерживают при температуре 70-80°C в течение 15-25 мин для инактивации фермента и фильтруют через бязь, после чего фильтрат направляют на сублимационную сушку или сушку иного типа при температуре конечного продукта не выше 45°C и остаточной влажности сухого продукта не более 10%. Сухой продукт измельчают до порошкообразного состояния и капсулируют.

Конечный продукт, полученный предлагаемым способом, представляет собой порошок от светло- до темно-серого цвета, содержащий в качестве основных биологически активных компонентов низкомолекулярный коллаген, тритерпеновые гликозиды, что определяет его общеукрепляющие и иммуномодулирующие свойства.

Получают биологически активный продукт, обладающий общеукрепляющими и иммуномоделирующими свойствами, в виде сухого порошка, который содержит:

Белок, в том числе коллаген, мас.%, не менее 70/42 Низкомолекулярный коллаген, в % от общего содержания коллагена, не менее 60 Тритерпеновые гликозиды, мг/г, не менее 5 Вода, мас.%, не более 10

При исследовании состава полученного продукта использовали следующие методы. Количество белка определяли по Кьельдалю (Лурье И.С., Скокан Л.Е., Цитович А.П. Технологический и микробиологический контроль в кондитерском производстве. Справочник. М.: КолосС. - 2003. - 416 с.), фракционирование коллагена осуществляли с помощью гель-электрофореза в 7% ПААГ (Остерман Л.А. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. - М.: Наука, 1981, 287 с.), определение тритерпеновых гликозидов (Чумак А.Д., Павель К.Г., Тимчишина Г.Н. Определение тритерпеновых гликозидов в голотуриях. // Известия ТИНРО-центра. - 1995. - Т. 118. -С.36-40).

Продукт может быть использован для приготовления биологически активной добавки к пище, являющейся источником низкомолекулярного коллагена, тритерпеновых гликозидов, применяемой в качестве общеукрепляющего средства при повышенных физических нагрузках, для восстановления после травм и хирургических операций [Шульгина Л.В., Блинов Ю.Г., Загородная Г.И. и др. Новые продукты для хирургических больных на основе гидролизата из кукумарии. // Сб. материалов Российской науч. конф. "Новые биомедицинские технологии с использованием биологически активных добавок". - Владивосток, 1998. - С.168 - 171; Гончаренко О.Г., Гроссман Н.В. Лечебно-профилактическое питание из кукумарии. // Вопросы питания. - 1994. - №4. - С.38 - 39; Прокопенко Д.В., Глотова И.А. Перспективы создания напитков функционального назначения для спортсменов // Журнал "Современные наукоемкие технологии" №3, 2010 г. стр. 66-67; Мельников В.И. Спортивная фармакология: биологически активные добавки, полученные из морепродуктов //Теория и практика физической культуры - 2007 - №9, с. 44-45].

Технический результат, обеспечиваемый изобретением, заключается в разработке нового способа получения биологически активного средства из голотурий, обладающего общеукрепляющими и иммуномодулирующими свойствами, при существенном сокращении времени приготовления готового препарата (БАВ) за счет использования ультразвуковой обработки и новых условий ферментативного гидролиза сырья - мускульного мешка голотурий. Кроме этого, расширяется спектр биологически активных веществ, получаемых из промысловых голотурий.

Ультразвуковую дезинтеграцию можно использовать, как основной метод разрушения клеточной оболочки. Разрушение клеточных структур (лизис) с помощью ультразвука применяется для экстрагирования внутриклеточных соединений. При интенсивной ультразвуковом действии ферменты и белки могут высвобождаться из клеток или субклеточных органелл в результате разрушения клеточной структуры. При этом вещество, которое необходимо растворить в жидкости, находится в нерастворимом состоянии. Чтобы экстрагировать его, необходимо раскрыть мембрану клетки. Ультразвук позволяет достичь большего проникновения растворителя в ткани и улучшить массообмен. Ультразвуковые волны вызывают кавитацию в жидкости, разрушают стенки клеток и способствуют выделению компонентов клеточного матрикса, а также обеспечивают лизис клеточных стенок микроорганизмов (http://bio-x.ru/articles/ultrazvukovaya-dezintegraciya-metod-razrusheniya-kletochnoy-obolochki-drozhzhey).

Необходимость параметров обработки вытекает из исследований, выполненных авторами настоящей заявки, касающихся выявления зависимости степени дезинтегрирования сырья при воздействии ультразвуковой обработки, степени гидролиза белка при ферментативном гидролизе, переходу биологически активных компонентов в растворимое состояние, приведенных в таблицах 1, 2 и 3.

Ультразвуковая обработка экстрактов проводилась с помощью прибора IKASONIC U 50 control, с интенсивностью воздействия (мощностью) 100-250 Вт/см3 в течение 3-15 мин. Высокая мощность ультразвукового воздействия вызывает повышение температуры обрабатываемого сырья, что влияет на нативную структуру белков и может вызывать их денатурацию. Как известно из литературных источников, денатурированный коллаген менее подвержен гидролизу. Поэтому при исследовании влияния ультразвукового воздействия на температуру обрабатываемого сырья подбирали мощность и продолжительность, не вызывающие значительного повышения температуры. Как видно из данных таблицы, снижение мощности ультразвукового воздействия и увеличение интенсивности не позволяет получить желаемой степени разрушения биополимеров и увеличения содержания в жидкой части сухих веществ, повышение мощности выше заданных пределов приводит к увеличению количества жидкой фракции, но при этом одновременно часть белковых компонентов денатурирует, переходит в нерастворимое состояние, а количество растворенных сухих веществ снижается. Наилучшие результаты дезинтегрирования сырья, при которых не наблюдается сильного разогрева, достигаются при соблюдении следующих условий: при мощности 150 Вт/см3 и времени 10-15 мин, мощности 200 Вт/см3 и времени 5 мин.

При ферментативном гидролизе происходит разрушение молекул коллагена до свободных аминокислот и ди-, три-, тетра- и полипептидов с молекулярной массой менее 5-10 кДа. Степень гидролиза коллагена оценивали по накоплению свободных аминогрупп методом формольного титрования и низкомолекулярных белковых фрагментов методом гель-электрофореза в конечном продукте при использовании различных ферментных препаратов. Степень гидролиза при этом должна быть не ниже 35%, а содержание низкомолекулярного коллагена должно составлять не ниже 60% от общего содержания коллагена.

Первоначально проводили ферментативный гидролиз на сырье без предварительной ультразвуковой обработки (табл.2).

В таблице 3 представлены результаты по содержанию свободных аминогрупп и низкомолекулярных фракций коллагена после обработки сырья ультразвуком и последующего ферментативного гидролиза. Воздействие ультразвуком мощностью 200 Вт/см3 в течение 5 мин позволяет получить ферментолизаты из ткани голотурий с более высокой степенью гидролиза белка и повысить количество гидролизованного коллагена (с молекулярной массой менее 10 кДа).

Полученные результаты позволяют сделать вывод о разрушении белков соединительной ткани (коллагена) и гидролиза межуточного вещества, содержащего протеогликаны под воздействием ультразвука, что способствует более глубокой степени гидролиза при обработке ферментными препаратами.

Таким образом, поставленную задачу изобретения решили путем использования обработки сырья ультразвуком перед проведением ферментативного гидролиза, что способствовало разрушению клеточных мембран, экстракции белков и изменению их структуры для большей доступности белка как субстрата для ферментных препаратов (http://selo-delo.ru/12-vliyanie-ultrazvukovogo-oblucheniya).

Примеры конкретного выполнения

Пример 1

1 кг свежезамороженного очищенного мускульного мешка трепанга измельчают на волчке или мясорубке, добавляют 3 л воды. Смесь перемешивают и подвергают обработке ультразвуком при 25 Гц 100 Вт/см3 в течение 10 мин. pH экстракта доводят 1 М раствором едкого натра до 8,0. Затем проводят ферментативный гидролиз, добавляя в смесь 100 мл раствора протамекса с протеолитической активностью 300 Е/г концентрацией 0,1 г/мл. Смесь выдерживают при температуре 37°С 3 ч. Затем смесь нагревают до температуры 80°C и выдерживают 20 мин для инактивации фермента. Смесь фильтруют через бязь и направляют на сублимационную сушку или сушку иного типа при температуре конечного продукта не выше 45°C и остаточной влажности сухого продукта не более 10%. Сухой продукт измельчают до порошкообразного состояния и капсулируют. Конечный продукт содержит белок, том числе коллаген - 67/40%, низкомолекулярный коллаген с молекулярной массой менее 5 кДа - 60% от общего содержания коллагена, тритерпеновые гликозиды - 7 мг/г.

Пример 2

Трепанг-сырец разделывают, удаляя окологлоточные венчики и внутренности.

2 кг сырья - очищенного и промытого мускульного мешка трепанга измельчают на мясорубке, добавляют 8 л воды. Смесь перемешивают и подвергают обработке ультразвуком при 30 Гц 150 Вт/см3 в течение 5 мин. pH экстракта доводят 1 М раствором едкого натра до 7,9. Затем проводят ферментативный гидролиз, добавляя в смесь 100 мл раствора мегатерина с протеолитической активностью 250 Е/г с концентрацией 0,24 г/мл. Смесь выдерживают при температуре 40°C 3,5 ч. Затем смесь нагревают до температуры 80°C и выдерживают 20 мин для инактивации фермента. Смесь фильтруют через бязь и направляют на сублимационную сушку или сушку иного типа при температуре конечного продукта не выше 45°C и остаточной влажности сухого продукта 10%. Сухой продукт измельчают до порошкообразного состояния и капсулируют. Конечный продукт содержит белок, в том числе коллаген - 69/41%, низкомолекулярный коллаген с молекулярной массой менее 5 кДа - 64% от общего содержания коллагена, тритерпеновые гликозиды - 6 мг/г.

Пример 3

1 кг свежезамороженного сырья - очищенного мускульного мешка кукумарии измельчают на мясорубке и добавляют 5 л воды. Смесь перемешивают и подвергают обработке ультразвуком при 30 Гц 300 Вт/см3 в течение 8 мин. pH экстракта доводят до pH 8,1 1 М раствором едкого натра. Затем проводят ферментативный гидролиз, добавляя в смесь 25 мл раствора эсперазы с протеолитической активностью фермента 60 Е/мл. Смесь выдерживают при температуре 42°C 2,5 ч. Затем смесь нагревают до температуры 80°C и выдерживают 20 мин для инактивации фермента. Смесь фильтруют через бязь и направляют на сублимационную сушку или сушку иного типа при температуре конечного продукта 45°C и остаточной влажности сухого продукта 10%. Сухой продукт измельчают до порошкообразного состояния и капсулируют. Конечный продукт содержит белок, в том числе коллаген - 72/43%, низкомолекулярный коллаген с молекулярной массой менее 5 кДа - 65% от общего содержания коллагена, тритерпеновые гликозиды - 13 мг/г.

Пример 4

2 кг кукумарии-сырца разделывают, очищая мускульный мешок от внутренностей, измельчают его на мясорубке. К измельченной массе добавляют 6 л воды, тщательно перемешивают и подвергают обработке ультразвуком при 25 Гц 300 Вт/см3 в течение 10 мин. pH экстракта доводят до pH 8,0 1 М раствором едкого натра. Затем проводят ферментативный гидролиз, добавляя в смесь 25 мл раствора савиназы с протеолитической активностью 60 Е/мл. Смесь выдерживают при температуре 42°C 3,5 ч. Затем смесь нагревают до температуры 80°C и выдерживают 20 мин для инактивации фермента. Смесь фильтруют через бязь и направляют на сублимационную сушку или сушку иного типа при температуре конечного продукта не выше 45°C и остаточной влажности сухого продукта не более 10%. Сухой продукт измельчают до порошкообразного состояния и капсулируют. Конечный продукт содержит белок, в том числе коллаген - 74/44%, низкомолекулярный коллаген с молекулярной массой менее 5 кДа - 68% от общего содержания коллагена, тритерпеновые гликозиды 12 мг/г.

Похожие патенты RU2562581C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПРОДУКТА, ОБЛАДАЮЩЕГО БИОЛОГИЧЕСКИ АКТИВНЫМИ СВОЙСТВАМИ, ИЗ ГОЛОТУРИЙ 2013
  • Пивненко Татьяна Николаевна
  • Ким Георгий Николаевич
  • Ковалев Николай Николаевич
  • Позднякова Юлия Михайловна
  • Давидович Валентина Владимировна
  • Есипенко Роман Владимирович
  • Михеев Евгений Валерьевич
RU2562595C2
Биологически активная добавка из голотурии и способ её получения 2021
  • Беговатов Андрей Федорович
  • Ткаченко Елена Владимировна
  • Коконов Роман Александрович
RU2755312C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ГОЛОТУРИЙ, БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА "АКМАР", КОРМОВАЯ БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА 2002
  • Тимчишина Г.Н.
  • Слуцкая Т.Н.
  • Афанасьева А.Е.
  • Павель К.Г.
  • Андреев Н.Г.
RU2236155C2
СПОСОБ ПОЛУЧЕНИЯ ГИДРОЛИЗАТА ИЗ ГИДРОБИОНТОВ, СПОСОБ ПРИГОТОВЛЕНИЯ КИСЛОМОЛОЧНОГО ПРОДУКТА И СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ТРИТЕРПЕНОВЫХ ГЛИКОЗИДОВ 1995
  • Блинов Ю.Г.
  • Загородная Г.И.
  • Павель К.Г.
  • Слуцкая Т.Н.
  • Тимчишина Г.Н.
  • Чумак А.Д.
  • Шульгина Л.В.
RU2095000C1
ВОДКА ОСОБАЯ 2014
  • Ким Георгий Николаевич
  • Ковалев Николай Николаевич
  • Позднякова Юлия Михайловна
  • Пивненко Татьяна Николаевна
  • Есипенко Роман Владимирович
  • Михеев Евгений Валерьевич
RU2562100C1
ОБЩЕУКРЕПЛЯЮЩЕЕ НЕСПЕЦИФИЧЕСКОЕ ИММУНОМОДУЛИРУЮЩЕЕ СРЕДСТВО 1996
  • Акулин В.Н.
  • Ковалев В.Г.
  • Семенцов В.К.
  • Слуцкая Т.Н.
  • Тимчишина Г.Н.
RU2147239C1
Способ получения пищевого сухого концентрата из голотурий 2015
  • Ким Георгий Николаевич
  • Богданов Валерий Дмитриевич
  • Гаркавец Маргарита Евгеньевна
  • Симдянкин Андрей Андреевич
  • Назаренко Антон Валерьевич
RU2617257C1
ПИЩЕВАЯ ОБЩЕУКРЕПЛЯЮЩАЯ ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКАЯ ДОБАВКА 1996
  • Акулин В.Н.
  • Ковалев В.Г.
  • Семенцов В.К.
  • Слуцкая Т.Н.
  • Тимчишина Г.Н.
RU2117435C1
СПОСОБ ПОЛУЧЕНИЯ ИЗ ГОЛОТУРИЙ ГОМОГЕННОГО СТЕРИЛИЗОВАННОГО РАСТВОРА АНТИОКСИДАНТНОЙ НАПРАВЛЕННОСТИ 2011
  • Савватеева Людмила Юрьевна
  • Ершов Александр Михайлович
  • Гроховский Владимир Александрович
  • Кудряшова Александра Андреевна
  • Сероштан Мария Васильевна
  • Фатеев Александр Владимирович
  • Березовский Олег Викторович
RU2467756C2
Способ получения мягкого сыра 2015
  • Ким Георгий Николаевич
  • Ковалев Николай Николаевич
  • Позднякова Юлия Михайловна
RU2606032C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОГО СРЕДСТВА ИЗ ГОЛОТУРИЙ, ОБЛАДАЮЩЕГО ОБЩЕУКРЕПЛЯЮЩИМИ И ИММУНОМОДУЛИРУЮЩИМИ СВОЙСТВАМИ

Изобретение относится к способу получения биологически активного средства из голотурий. Способ получения биологически активного средства из голотурий, обладающего общеукрепляющими и иммуномодулирующими свойствами, заключающийся в измельчении очищенного мускульного мешка, смешивании сырья с водой, обработке полученной смеси ультразвуком, далее проводят ферментативный гидролиз смеси ферментными препаратами протеолитического действия, после инактивируют фермент, фильтруют и сушат при определенных условиях. Вышеописанный способ позволяет расширить спектр биологически активных веществ, получаемых из промысловых голотурий, обладающих общеукрепляющими и иммуномодулирующими свойствами. 3 табл., 4 пр.

Формула изобретения RU 2 562 581 C1

Способ получения биологически активного средства из голотурий, обладающего общеукрепляющими и иммуномодулирующими свойствами, включающий измельчение сырья - очищенного мускульного мешка, смешивание сырья с водой, обработку протеолитическим ферментом, инактивацию фермента, фильтрацию и сушку, отличающийся тем, что измельченное сырье смешивают с водой в соотношении 1:3-1:5, перед ферментативным гидролизом обрабатывают ультразвуком мощностью 150-200 Вт/см3 в течение 5-15 минут, а ферментативный гидролиз осуществляют ферментными препаратами протеолитического действия: или протамекс, или мегатерин, или эспераза, или савиназа в количестве 1,5-3 П/Е на 1 г сырья, при pH 7,9-8,1 в течение 2,5-3,5 часа.

Документы, цитированные в отчете о поиске Патент 2015 года RU2562581C1

СПОСОБ ПЕРЕРАБОТКИ ДАЛЬНЕВОСТОЧНОЙ КУКУМАРИИ Cucumaria japonica И БИОЛОГИЧЕСКИ АКТИВНЫЙ ПРОДУКТ, ПОЛУЧАЕМЫЙ ЭТИМ СПОСОБОМ 2009
  • Стоник Валентин Аронович
  • Агафонова Ирина Григорьевна
  • Аминин Дмитрий Львович
  • Антонов Александр Сергеевич
  • Иващенко Вера Федоровна
  • Макарьева Татьяна Николаевна
  • Ребачук Николай Михайлович
RU2426453C1
ИММУНОСТИМУЛИРУЮЩИЙ КОМПЛЕКС, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ 2010
  • Костецкий Эдуард Яковлевич
  • Санина Нина Михайловна
  • Мазейка Андрей Николаевич
  • Цыбульский Александр Васильевич
  • Воробьева Наталья Сергеевна
  • Новикова Ольга Дмитриевна
  • Портнягина Ольга Юрьевна
  • Шныров Валерий Леонидович
RU2446822C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ГОЛОТУРИЙ, БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА "АКМАР", КОРМОВАЯ БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА 2002
  • Тимчишина Г.Н.
  • Слуцкая Т.Н.
  • Афанасьева А.Е.
  • Павель К.Г.
  • Андреев Н.Г.
RU2236155C2
ТРИТЕРПЕНОВЫЕ КОМПОЗИЦИИ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ 1999
  • Арнтзен Чарльз Дж.
  • Трейси Мэри Блейк
  • Гуттерман Джордан У.
  • Хоффманн Джозеф Дж.
  • Бейли Дэвид Т.
  • Джейатилейк Гамини С.
RU2244547C2

RU 2 562 581 C1

Авторы

Ким Георгий Николаевич

Позднякова Юлия Михайловна

Ковалев Николай Николаевич

Пивненко Татьяна Николаевна

Давидович Валентина Владимировна

Есипенко Роман Владимирович

Михеев Евгений Валерьевич

Перцева Анна Дмитриевна

Даты

2015-09-10Публикация

2014-01-29Подача