ТЕПЛООБМЕННИК Российский патент 2015 года по МПК F28D7/00 

Описание патента на изобретение RU2563946C1

Изобретение относится к области энергетики и может быть использовано в конструкциях рекуперативных теплообменных аппаратов.

Известен теплообменник, включающий корпус с патрубками подвода пара и отвода его конденсата, водяную камеру с патрубками подвода и отвода нагреваемой воды, размещенную в корпусе трубную систему с поверхностью теплообмена первого и второго хода, имеющую зону конденсации пара и зону охладителя конденсата, охладитель конденсата выполнен встроенным, образован частью трубной системы с поверхностью теплообмена первого хода, ограниченной кожухом, образованным из горизонтальных перегородок и вертикальных стенок, и расположен под зоной конденсации пара, трубная система выполнена из U-образных труб, и охладитель конденсата содержит дополнительную зону на втором ходу трубной системы, с возможностью поступления конденсата пара в охладитель конденсата и поперечного омывания поверхности теплообмена сначала второго, а затем первого хода трубной системы (RU №140783, МПК F28D 7/00, опубл. 20.05.2014 г.).

Недостатком известного решения является относительная сложность конструкции устройства.

Известен теплообменник типа труба в трубе, состоящий из корпуса с патрубками для подвода нагреваемого теплоносителя, отвода охлажденного теплоносителя, внутренней трубы с наружным и внутренним оребрением, выполненным в виде цельнометаллических стержней, расположенных в шахматном порядке, и интенсификатора потока, представляющего собой заглушенную с двух сторон трубу (RU №135101, МПК F28D 7/10, опубл. 27.11.2013 г.).

Недостатком известного решения является относительно низкая эффективность теплопередачи движущихся потоков между собой, обусловленная степенью турбулизации движущихся потоков, которую позволяют обеспечить элементы конструкции теплообменника.

Наиболее близким техническим решением по совокупности существенных признаков является теплообменник типа труба в трубе, во внутренней трубе и в межтрубном пространстве которого установлены винтовые вставки, внутреннее пространство внутренней трубы и межтрубное пространство между внутренней и наружной трубами представляют из себя винтовые полости, образованные стенками труб и винтовыми вставками, внутренняя винтовая вставка соединена, преимущественно с помощью сварки или пайки, с внутренней поверхностью внутренней трубы, винтовая вставка в межтрубном пространстве соединена таким же образом с наружной поверхностью внутренней трубы и с внутренней поверхностью наружной трубы, причем материалы внутренней трубы, винтовых вставок и мест стыков винтовых вставок со стенками внутренней трубы имеют минимальное термическое сопротивление, потоки сред (жидких или газообразных) во внутренней трубе и в межтрубном пространстве протекают по винтовым спиралям (RU №2502931, МПК F28F 1/42, опубл. 27.12.2013 г.). Названная конструкция выбрана за прототип.

Недостатками прототипа являются относительно большая материалоемкость и сложность самой конструкции от наличия отдельных направляющих вставок в виде спиралей во внутренней трубе и межтрубном пространстве.

Технический результат заключается в повышении эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции.

Технический результат достигается тем, что теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки. Вставки межтрубного пространства ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб.

На (фиг. 1) изображена конструкция теплообменника, которая включает внешнюю трубу 1 с подводящим 2 и отводящим 3 патрубками греющей среды и вставленную в нее внутреннюю трубу 4 с подводящим 5 и отводящим 6 патрубками нагреваемой среды. В межтрубном пространстве 7 установлены вставки 8, которые 7 введены в сечение внутренней трубы 4 с частичным его перекрытием и ступенчато расположены по ее длине. Вставки 8 выполнены полыми тепловыми трубами.

Теплообменник (фиг. 1) работает следующим образом. Изначально для наибольшей эффективности работы теплообменника организуют схему движения греющей и нагреваемой среды в противоточном направлении. Для этого во внутреннюю полость внутренней трубы 4 с частично перекрытым при помощи вставок 8 сечением через подводящий 5 и отводящий 6 патрубки нагреваемой среды осуществляют подачу нагреваемой среды. Затем в межтрубное пространство 7 теплообменника, ограниченное внутренней поверхностью внешней трубы 1, наружной поверхностью внутренней трубы 4 и вставками 8, через подводящий 2 и отводящий 3 патрубки осуществляют подачу греющей среды. Движение греющей и нагреваемой среды в теплообменнике происходит вдоль вставок 8, которые создают на их пути местные гидравлические сопротивления (ходы), условия для турбулизации и увеличивают время нахождения (контакта теплообмена) сред в теплообменнике, в результате чего интенсифицируется процесс теплообмена (согласно теории гидродинамического подобия).

В случае использования настоящего теплообменника для сред вода-вода его пространственная ориентация может быть произвольной.

В том случае когда теплообменник используется для конденсации пара, то пар для максимальной эффективности процесса конденсации направляется во внутреннюю трубу 4, ориентированную вертикально, сверху через подводящий патрубок 5, а конденсат отводится через отводящий патрубок 6, охлаждающая среда подается в межтрубное пространство 7 снизу через подводящий патрубок 2 и отводится через отводящий патрубок 3.

Эффективность работы теплообменника может быть увеличена за счет применения вставок из тепловых труб, рабочее вещество которых выбирается с учетом расчетного температурного напора и области применения теплообменника.

В настоящем теплообменнике интенсивность теплообмена между греющей и нагреваемой средой увеличивается при помощи межтрубных вставок из тепловых труб, которые благодаря особому расположению способствуют организации местных гидравлических сопротивлений, обеспечивающих турбулизацию самих движущихся потоков, общая материалоемкость конструкции уменьшается, чем достигается его упрощение, а следовательно, обеспечивается снижение себестоимости, что в итоге характеризует его относительно известных технических решений как более энергоэффективный.

Похожие патенты RU2563946C1

название год авторы номер документа
ВЕРТИКАЛЬНЫЙ КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК 2015
  • Шершевский Александр Геннадьевич
  • Болитэр Валерий Аркадьевич
  • Костин Павел Андреевич
  • Аликин Павел Павлович
  • Карпов Дмитрий Николаевич
RU2603450C1
Пароводяной теплообменник 1983
  • Корсаков Федор Филиппович
  • Корсакова Елена Федоровна
SU1143926A1
ТЕПЛООБМЕННИК 2011
  • Левцев Алексей Павлович
  • Макеев Андрей Николаевич
  • Лазарев Александр Александрович
RU2476800C1
ПРЯМОТОЧНЫЙ ВЕРТИКАЛЬНЫЙ ПАРОГЕНЕРАТОР 1998
  • Дмитриев С.М.
  • Абрамов А.А.
  • Калентьев В.И.
RU2140608C1
Теплообменник 2023
  • Картошкин Александр Петрович
  • Евсеев Александр Сергеевич
  • Агапов Дмитрий Станиславович
RU2799161C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 1999
  • Беляков В.К.
  • Перниковская Т.В.
  • Ильина Т.Р.
  • Лапир М.А.
  • Мирзоян Г.А.
  • Степин Н.М.
  • Жуков В.И.
  • Горлов М.В.
  • Токарев С.А.
  • Янкин Е.Н.
  • Горюнов В.В.
RU2153642C1
ПАРОВОДЯНОЙ ТЕПЛООБМЕННИК 2005
  • Белоусов Михаил Павлович
  • Беляева Светлана Юрьевна
  • Колтунов Виктор Алексеевич
  • Заёкин Леонид Петрович
RU2305227C1
Теплообменник с пространственно-спиральными змеевиками 2023
  • Походяев Сергей Борисович
RU2815748C1
ПЕРЕДВИЖНОЙ ТЕПЛООБМЕННИК ДЛЯ НАГРЕВА ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ НА СКВАЖИНЕ 1998
  • Ибрагимов Н.Г.
  • Джафаров Мирзахан Атакиши Оглы
RU2146001C1
ТЕПЛООБМЕННИК 1994
  • Копытов Г.Г.
  • Зайцев А.Л.
  • Пирогов Г.Н.
RU2097670C1

Реферат патента 2015 года ТЕПЛООБМЕННИК

Изобретение относится к теплотехнике и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки, которые ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб. Технический результат - повышение эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 563 946 C1

1. Теплообменник, содержащий внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве внешней трубы установлены вставки, отличающийся тем, что вставки ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения.

2. Теплообменник по п. 1, отличающийся тем, что вставки выполнены в виде тепловых труб.

Документы, цитированные в отчете о поиске Патент 2015 года RU2563946C1

ТЕПЛООБМЕННИК ТРУБА В ТРУБЕ 2011
  • Холодков Игорь Вениаминович
  • Головенкин Евгений Николаевич
  • Ефремов Анатолий Михайлович
  • Мелкомуков Анатолий Анисимович
  • Безруких Алексей Дмитриевич
RU2502931C2
Дорновый замок к пильгерстанам 1961
  • Финагин П.М.
  • Медницкий В.Г.
  • Потапов И.Н.
SU140783A1
US 2006124284 A1 15.06.2006
US 2010071675 A1 25.03
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
NL 2002567 C 30.08.2010

RU 2 563 946 C1

Авторы

Левцев Алексей Павлович

Макеев Андрей Николаевич

Кудашев Сергей Федорович

Храмов Сергей Иванович

Даты

2015-09-27Публикация

2014-11-05Подача