БЕСКОНТАКТНЫЙ РАДАРНЫЙ УРОВНЕМЕР ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ В РЕЗЕРВУАРАХ АЭС Российский патент 2015 года по МПК G01F23/284 

Описание патента на изобретение RU2564453C1

Изобретение относится к области контрольно-измерительной аппаратуры объектов атомной энергетики и может быть использовано в составе АСУ ТП АЭС для бесконтактного измерения уровня жидких радиоактивных отходов в резервуарах.

Известен бесконтактный ультразвуковой уровнемер для измерения уровня радиоактивных жидкостей АЭС, принцип действия которого основан на локации уровня звуковыми импульсами, проходящими через газовую среду и отражающимися от границы раздела «газ - измеряемая среда» [1]. Уровнемер [1] состоит из датчика и соединяемого с ним экранированным кабелем контроллера. Датчик устанавливается в верхней части резервуара, а контроллер - на щите управления вне зоны действия радиации. Данный уровнемер имеет следующие недостатки:

- большое расхождение конуса излучения, вызывающее отражения от стационарных и нестационарных препятствий, приводит к ошибкам измерения;

- применим только в резервуарах с нормальным давлением и температурой;

- на характеристики сигнала влияют пыль, пар, пена и газовые смеси.

Известен бесконтактный радарный уровнемер, принцип действия которого основан на непрерывной частотно-модулированной (ЧМ) радиолокации в КВЧ-диапазоне [2], обеспечивающей наиболее высокую точность измерения дальности. Уровнемер представляет собой ЧМ-радиолокатор в диапазоне частот 94 ГГц с девиацией частоты 4 ГГц и максимальной ошибкой измерения уровня ±1 мм, выполненный в виде моноблока, и лишен недостатков, присущих ультразвуковому уровнемеру. Однако данный уровнемер имеет следующие недостатки:

- повышенная сложность схемы построения, обусловленная использованием КВЧ-диапазона, приводит к пониженной надежности;

- принцип непрерывной ЧМ-радиолокации приводит к постоянному энергопотреблению, сокращающему время наработки на отказ;

- моноблочное исполнение не обеспечивает работоспособность в условиях радиационного воздействия.

Известен бесконтактный радарный уровнемер, использующий принцип импульсной СШП-радиолокации [3], выбранный за прототип. Уровнемер представляет собой радиолокатор с импульсными СШП-сигналами длительностью 2 нс при частоте повторения 5 МГц со среднеквадратической ошибкой измерения уровня ±5 мм, приемопередающая часть которого отличается функциональной и схемотехнической простотой. Данный уровнемер лишен недостатков, присущих ультразвуковым и ЧМ-уровнемерам, однако, выполненный в виде размещаемого на антенне моноблока, отличается низкой надежностью и временем наработки на отказ, обусловленными действием радиации на его электронно-компонентную базу, а также имеет более высокую ошибку измерения уровня по сравнению с предыдущим аналогом [2].

Техническим результатом предложенного изобретения является возможность бесконтактного измерения уровня жидких радиоактивных отходов в резервуарах АЭС с высокой точностью, надежностью и достоверностью.

Технический результат достигается тем, что бесконтактный радарный уровнемер для измерения уровня жидких радиоактивных отходов, построенный на принципе импульсной сверхширокополосной радиолокации, содержащий антенну, генератор сигналов, приемник с компаратором, блок обработки с время-цифровым преобразователем и интерфейсом, выполнен с разделением на приемопередающий СВЧ-модуль и цифровой блок обработки. Приемопередающий СВЧ-модуль выполнен на радиационно-стойкой электронно-компонентной базе, состоит из генератора короткоимпульсных сигналов и приемника отраженных сигналов и расположен вместе с антенной на резервуаре. Цифровой блок обработки подключен к СВЧ-модулю с помощью кабеля и расположен вне зоны действия радиации.

Для защиты СВЧ-модуля от действия радиации с поверхности жидкости, конденсированных паров и капель от брызг антенна интегрирована в состав СВЧ-модуля, выполнена в виде плоского рупора с несмачиваемой жидкостью поверхностью раскрыва, размеры и материал которого обеспечивают защиту СВЧ-модуля от радиации с поверхности жидкости.

Для устойчивости к действию электромагнитных наводок и помех от работы технологического электрооборудования АЭС кабель выполнен на оптическом волокне.

Для повышения точности измерения уровня жидкости в цифровом блоке обработки измерение задержки между излучаемым и отраженным сигналами проводится по частоте биений сигналов двух идентичных друг другу ЧМ-генераторов ждущего режима, один из которых запускается опорным сигналом, совпадающим по времени с излучаемым импульсом, второй ЧМ-генератор - импульсом дальности, совпадающим по времени с отраженным импульсом.

Бесконтактный радарный уровнемер для измерения уровня жидких радиоактивных отходов в резервуарах АЭС поясняется следующими чертежами.

На фигуре 1 приведена структурная схема уровнемера. На ней показаны: 1 - сверхширокополосная антенна; 2 - приемопередающий СВЧ-модуль; 3 - кабель связи; 4 - цифровой блок обработки.

На фигуре 2 приведена функциональная схема приемопередающего СВЧ-модуля. На ней показаны: 5 - генератор сверхкоротких импульсов; 6 - направленный ответвитель; 7 - амплитудный детектор; 8 - компаратор.

На фигуре 3 приведены эпюры основных сигналов, характеризующих работу СВЧ-модуля. На фигуре 3а показан видеоимпульс, генерируемый генератором 5; на фигуре 3б показан сигнал на выходе направленного ответвителя 6 в виде моноцикла Гаусса; на фигуре 3в - огибающие сигнала генератора 5 (А) и отраженного сигнала (Б) на выходе амплитудного детектора 7; на фигуре 3г - опорный импульс (А) и импульс дальности (Б) на выходе компаратора 8.

На фигуре 4 приведена функциональная схема цифрового блока обработки. На ней показаны: 9 - время-цифровой преобразователь; 10 - интерфейс связи с АСУ ТП АЭС.

На фигуре 5 приведена функциональная схема время-цифрового преобразователя. На ней показаны: 11 - переключатель; 12 - первый ЧМ-генератор; 13 - второй ЧМ-генератор; 14 - смеситель; 15 - частотомер.

На фигуре 6 приведены эпюры основных сигналов, характеризующих работу цифрового блока обработки. На фигуре 6а показаны опорный импульс (А) и импульс дальности (Б) на входе блока обработки; на фигуре 6б - модуляционные характеристики f(t) ЧМ-генераторов 12, 13; на фигуре 6в - сигнал биений VБ на выходе смесителя 14.

Устройство работает следующим образом.

В СВЧ-модуле генератор 5 генерирует сверхкороткие видеоимпульсы, которые через направленный ответвитель 6 поступают в антенну 1 и излучаются в виде моноцикла Гаусса. Ослабленная в направленном ответвителе 6 до допустимого уровня часть сигнала поступает на вход амплитудного детектора 7, с выхода которого огибающая сигнала генератора в виде видеоимпульса поступает на компаратор 8, формирующий опорный (стартовый) импульс для блока обработки 4. Отраженный от поверхности жидкости сигнал через антенну 1 и направленный ответвитель 6 поступает в амплитудный детектор 7, с выхода которого огибающая отраженного сигнала в виде видеоимпульса поступает на компаратор 8 с регулируемым порогом, формирующий импульс дальности для блока обработки 4.

С выхода СВЧ-модуля опорный импульс и импульс дальности подаются на вход время-цифрового преобразователя 9, на входе которого установлен переключатель 11, подключающий при поступлении на его вход опорного импульса ЧМ-генератор 12, находящийся в ждущем режиме, при поступлении импульса дальности - подключающий точно такой же ЧМ-генератор 13, находящийся в ждущем режиме; с выходов ЧМ-генераторов 12, 13 линейно частотно-модулированные сигналы, сдвинутые по времени на величину задержки импульса дальности относительно опорного импульса, поступают на входы смесителя 14, с выхода которого сигнал биений подается на частотомер 15, где его частота измеряется и пересчитывается в коды уровня для передачи через интерфейс 10 в АСУ.

Построение бесконтактного радарного уровнемера, использующего импульсный метод СШП-радиолокации с малым энергопотреблением, и введение конструктивно-функционального разделения на СВЧ-модуль и цифровой блок обработки позволят повысить его надежность и время наработки на отказ при функционировании в составе АСУ ТП АЭС.

Литература

1. Уровнемер УРАН-ДУУ. http://www.niiis.nnov.ru/wps/wcm/connect/niiis/site/production/produkcia/ptsAscTpNps/izdeliya/uran_duu/dec7278040dcac228c679e224b65266e.

2. Уровнемер УЛМ-11. http://www.limaco.ru/ru/production.

3. И.Я. Иммореев. Практическое использование сверхширокополосных радаров. / Сборник докладов III Всероссийской конференции «Радиолокация и радиосвязь». Стр. 172-173. ПРИЛОЖЕНИЕ. Электронное издание (Tested for Acrobat Reader 9 Windows & Unix versions) 1035 стр. Москва: Изд. ИРЭ им. В.А.Котельникова РАН, 2009.

Похожие патенты RU2564453C1

название год авторы номер документа
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР С ВОЛНОВОДНОЙ ЛИНИЕЙ 2013
  • Смутов Александр Иванович
RU2556746C2
РАДИОЛОКАЦИОННЫЙ ВОЛНОВОДНЫЙ УРОВНЕМЕР С ВОЛНОВОДНОЙ ПАРОЙ 2013
  • Смутов Александр Иванович
RU2579634C2
РАДИОЛОКАЦИОННЫЙ ИМПУЛЬСНЫЙ РЕЦИРКУЛЯЦИОННЫЙ УРОВНЕМЕР 2003
  • Бало А.Г.
RU2247950C1
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР 2014
  • Либерман Владимир Вениаминович
  • Личков Геннадий Геннадьевич
  • Новиков Сергей Александрович
RU2561309C1
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР 1999
  • Атаянц Б.А.
  • Езерский В.В.
  • Смутов А.И.
RU2159923C1
ТРЕХМЕРНАЯ СИСТЕМА ГОЛОГРАФИЧЕСКОГО РАДИОВИДЕНИЯ ДЛЯ ДОСМОТРА 2017
  • Калмыков Алексей Андреевич
  • Калмыков Андрей Алексеевич
  • Добряк Вадим Алексеевич
  • Курленко Антон Сергеевич
RU2652530C1
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР 1997
  • Галкин С.В.
  • Даев Е.А.
  • Нечепуренко Ю.Г.
  • Сухинин Б.В.
  • Шматов В.Н.
  • Калинин И.А.
  • Северин В.И.
RU2124703C1
Способ работы импульсной радиолокационной системы и устройство для его реализации 2016
  • Зиганшин Эдуард Гусманович
  • Нумеров Михаил Андреевич
RU2619468C1
РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ТРЕВОЖНОЙ СИГНАЛИЗАЦИИ С НЕПРЕРЫВНЫМ ИЗЛУЧЕНИЕМ ЧАСТОТНО-МОДУЛИРОВАННЫХ КОЛЕБАНИЙ 2014
  • Первунинских Вадим Александрович
  • Иванов Владимир Эристович
  • Белов Андрей Геннадьевич
  • Долбилкин Роман Васильевич
  • Суслов Алексей Николаевич
  • Тихонов Евгений Николаевич
RU2584496C1
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР 2012
  • Курейчик Виктор Михайлович
  • Курейчик Владимир Викторович
  • Огурцов Евгений Сергеевич
  • Огурцов Сергей Федорович
  • Дорух Игорь Георгиевич
  • Огурцова Анна Сергеевна
  • Иванченко Юрий Борисович
  • Иванченко Борис Юрьевич
RU2518373C1

Иллюстрации к изобретению RU 2 564 453 C1

Реферат патента 2015 года БЕСКОНТАКТНЫЙ РАДАРНЫЙ УРОВНЕМЕР ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ В РЕЗЕРВУАРАХ АЭС

Изобретение относится к области контрольно-измерительной аппаратуры объектов атомной энергетики и может быть использовано в составе АСУ ТП АЭС для бесконтактного измерения уровня жидких радиоактивных отходов в резервуарах. Техническим результат - возможность бесконтактного измерения уровня жидких радиоактивных отходов в резервуарах АЭС с высокой точностью, надежностью и достоверностью. Бесконтактный радарный уровнемер для измерения уровня жидких радиоактивных отходов, построенный на принципе импульсной сверхширокополосной радиолокации, содержащий антенну, генератор сигналов, приемник с компаратором, блок обработки с время-цифровым преобразователем и интерфейсом, выполнен с разделением на приемопередающий СВЧ-модуль и цифровой блок обработки. Приемопередающий СВЧ-модуль выполнен на радиационно-стойкой электронно-компонентной базе, состоит из генератора короткоимпульсных сигналов и приемника отраженных сигналов и расположен вместе с антенной на резервуаре. Цифровой блок обработки подключен к СВЧ-модулю с помощью кабеля и расположен вне зоны действия радиации. 3 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 564 453 C1

1. Бесконтактный радарный уровнемер для измерения уровня жидких радиоактивных отходов, построенный на принципе импульсной сверхширокополосной радиолокации, содержащий антенну, генератор сигналов, приемник с компаратором, блок обработки с время-цифровым преобразователем, отличающийся тем, что уровнемер выполнен с разделением на приемопередающий СВЧ-модуль и цифровой блок обработки, причем приемопередающий СВЧ-модуль выполнен на радиационно-стойкой электронно-компонентной базе, состоит из генератора короткоимпульсных сигналов и приемника отраженных сигналов и расположен вместе с антенной на резервуаре, а цифровой блок обработки, содержащий время-цифровой преобразователь и интерфейс, подключен к СВЧ-модулю с помощью кабеля и расположен вне зоны действия радиации.

2. Уровнемер по п. 1, отличающийся тем, что для защиты СВЧ-модуля от действия радиации с поверхности жидкости, конденсированных паров и капель от брызг антенна интегрирована в состав СВЧ-модуля, выполнена в виде плоского рупора с несмачиваемой жидкостью поверхностью раскрыва, размеры и материал которого обеспечивают защиту СВЧ-модуля от радиации с поверхности жидкости.

3. Уровнемер по п. 1, отличающийся тем, что для устойчивости к действию электромагнитных наводок и помех от работы технологического электрооборудования АЭС кабель выполнен на оптическом волокне.

4. Уровнемер по п. 1, отличающийся тем, что для повышения точности измерения уровня жидкости в время-цифровом преобразователе измерение задержки между излучаемым и отраженным сигналами происходит с помощью частотомера по частоте биений сигналов двух идентичных друг другу ЧМ-генераторов ждущего режима, один из которых запускается опорным сигналом, совпадающим по времени с излучаемым импульсом, второй ЧМ-генератор - импульсом дальности, совпадающим по времени с отраженным импульсом.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564453C1

ПРИСПОСОБЛЕНИЕ ДЛЯ КРЕПЛЕНИЯ ШЛИФОВАЛЬНОГО КРУГА НА ШПИНДЕЛЕ 1929
  • Волынский Д.С.
SU18119A1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВОЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2012
  • Хаблов Дмитрий Владиленович
RU2521729C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШАРОШКИ ОДНОШАРОШЕЧНОГО ДОЛОТА 2002
  • Гавриленко М.В.
  • Ищук А.Г.
  • Богомолов Р.М.
  • Филатов Н.В.
RU2219015C1
US 6831594 B2 14.12.2004
СИСТЕМА ДЛЯ ИЗГОТОВЛЕНИЯ ИМЕЮЩЕГО МОДУЛЬНУЮ КОНСТРУКЦИЮ УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ И УНИФИЦИРОВАННЫЕ КОМПОНЕНТЫ 2003
  • Ференбах Йозеф
  • Мотцер Юрген
  • Гриссбаум Карл
RU2342639C2

RU 2 564 453 C1

Авторы

Кашин Александр Васильевич

Кунилов Анатолий Львович

Ивойлова Мария Михайловна

Даты

2015-10-10Публикация

2014-07-15Подача