СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УТЕЧКИ КОНДЕНСИРУЕМОГО ГАЗА ИЗ СОДЕРЖАЩЕГО КОНДЕНСИРУЕМЫЙ ГАЗ ПРИБОРА Российский патент 2015 года по МПК G01M3/20 

Описание патента на изобретение RU2565327C2

Изобретение относится к способу определения утечки конденсируемого газа, прежде всего хладагента, из содержащего конденсируемый газ прибора, а также к соответствующему устройству.

При серийном изготовлении холодильных установок, например холодильных шкафов или кондиционеров, желательно наличие интегрированной в серийное изготовление проверки герметичности при атмосферном давлении. Особая сложность состоит в том, что необходимо определять чрезвычайно низкие концентрации хладагента, измеряемые миллиардными долями, в течение очень короткого времени - 10 секунд. При этом другие выделяющие газ углеводороды, например краски, смазывающие или чистящие средства, могут образовывать искажающий фон, который следует устранить посредством соответствующего селективного измерения хладагента. Тест на пузырьки в рамках испытания погружением вряд ли возможен, так как при этом подлежащий проверке прибор может получить неустранимые повреждения.

До сих пор не существует методики, с помощью которой в течение короткого времени линейного такта производственной линии полностью можно было бы интегрально испытать полностью готовую к эксплуатации холодильную установку на выделение хладагента. Довольствуются тем, что известные места утечек, например места пайки, уплотнения, клапаны и т.д., локально исследуются устройством для определения запаха. При этом требуется чрезвычайная тщательность и внимание со стороны оператора.

Задачей изобретения является создание способа и устройства для определения утечек на приборе, который содержит конденсируемый газ, так чтобы, несмотря на небольшую концентрацию подлежащего детектированию газа, обеспечивалось надежное и быстрое определение утечек.

Эта задача решена в способе, охарактеризованном в пункте 1 формулы изобретения. Предлагаемый в изобретении способ включает отсасывание газа окружающей среды из окружающей прибор среды; направление газа окружающей среды через адсорбер или над адсорбером, который адсорбирует конденсируемый газ; активацию адсорбера для десорбции адсорбированного газа; и направление десорбированного газа посредством высоковакуумного насоса к газовому датчику для селективного распознавания газа, причем десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом.

Кроме того, указанная задача решена в устройстве для определения утечки конденсируемого газа, прежде всего хладагента, из содержащего конденсируемый газ прибора, содержащем: подающий насос для отсасывания газа окружающей среды из окружающей прибор среды и для направления этого газа через адсорбционную камеру, содержащую адсорбер; подсоединенный к адсорбционной камере газовый датчик для селективного распознавания конденсируемого газа; управляемое активирующее устройство для активации адсорбера с целью десорбции адсорбированного газа; и высоковакуумный насос для направления десорбированного газа к газовому датчику, причем десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом.

Таким образом, согласно изобретению происходит аккумулирование подлежащего определению газа на адсорбере. После обогащения адсорбера происходит активация десорбции адсорбированного газа, например, посредством теплового излучения. Накопленный газ в соответственно повышенной концентрации отсасывается к газовому датчику. Таким образом, в прерывистом режиме работы также и при небольшой концентрации газа может быть получен надежный результат измерений, который допускает количественную оценку. Подобный способ измерений является применяемым при работе производственной линии без замедления производственного такта. Первая селекция происходит во время адсорбции, так как адсорбент связывается селективно. Вторая селекция происходит в газовом датчике, который представляет собой селективный газовый датчик, который не только детектирует газы, но и может их анализировать, например масс-спектрометр.

В способе согласно изобретению сначала происходит селективная адсорбция хладагента в отсосанном газе через определенное время, например 20 секунд. Затем мгновенно следует десорбция газа в масс-спектрометр, где измеряемое ко времени концентрации и адсорбции парциальное давление появляется на специфической массовой линии хладагента. Это парциальное давление и является мерой для интенсивности утечки. Все вносящие искажения газы, например водород или углеводороды, подавляются за счет того, что на измеренной массовой линии они не имеют интенсивности.

Технический результат, достигаемый при осуществлении изобретения, заключается в повышении надежности контроля приборов на предмет негерметичности в течение короткого времени при очень малых концентрациях просачивающегося конденсируемого газа в окружающей прибор среде, измеряемых в миллиардных долях, и в обеспечении простоты конструкции. Изобретение расширяет арсенал технических средств по контролю герметичности приборов, в частности в условиях массового производства.

Далее со ссылкой на чертеж подробнее объясняется пример выполнения изобретения.

На единственной фигуре чертежа показано принципиальное изображение примера осуществления изобретения.

Подвергаемый проверке на утечки прибор 10 является прибором, который содержит контур хладагента. Хладагент может представлять собой, например, R22, R410A, R134a и т.п. В любом случае он представляет собой конденсируемый газ. На чертеже прибор 10 показан лишь схематично. Контур хладагента прибора 10 подробно не показан. Из-за утечки 11 из прибора хладагент выступает наружу с небольшой интенсивностью утечки.

В предложенном примере выполнения прибор 10 находится в испытательной камере 12, в которую он помещен с целью испытаний. Испытательная камера 12 герметична настолько, что за предусмотренное время накопления не происходит заметной потери газа. Разность давления отсутствует, поэтому камера не должна обладать вакуумными свойствами и может быть выполнена очень просто, благодаря чему возникают большие преимущества в отношении затрат. Посредством всасывающей линии 13 она соединена с подающим насосом 14, который отсасывает окружающий прибор 10 газ 15 из испытательной камеры. Испытательная камера 12 может включать в себя вентилятор 16 для улучшения перемешивания газа окружающей среды с выходящим потоком утечки.

Наличие испытательной камеры 12 является необязательным. Вместо испытательной камеры может быть предусмотрено, что предмет или же испытуемый образец безоболочечно подвергается воздействию окружающей атмосферы, при этом поток воздуха в окружающей атмосфере направляется вдоль всей поверхности безоболочечного испытуемого образца исключительно за счет всасывания, как это описано в патентной заявке DE 10 2009 004 363 (Inficon).

Всасывающая линия 13 ведет к адсорбционной камере 20, которая посредством первого клапана 21 соединена с подающим насосом 14. Адсорбционная камера имеет замкнутый корпус, в котором находится адсорбент 22, сквозь который или же вокруг которого проходит поток газа так, что возникает обширный контакт. Адсорбент должен быть выбран специально для того, чтобы адсорбировать хладагент. Например, он может представлять собой активированный уголь или цеолит. Активированный уголь может быть изготовлен из скорлупы кокосового ореха. Материал подобного типа продается под наименованием ORBO. Адсорбент связывает используемый хладагент, а также и другие газы. Селекция происходит в ходе процесса отделения в селективном газовом датчике (например, масс-спектрометре). Газовая адсорбция в адсорбенте происходит при комнатной температуре. Другая форма выполнения предусматривает, что адсорбирующая поверхность во время фазы адсорбции охлаждается и позднее нагревается до комнатной температуры для десорбции.

Адсорбционная камера 20 имеет окно 24 из кварцевого стекла или CaF. Перед этим окном находится тепловой излучатель 25 в форме нагревательного рефлектора. Излучение теплового излучателя 25 направлено на адсорбент, за счет чего происходит активация адсорбента для десорбции адсорбированного газа. Десорбция вызывается путем управляемого активирования теплового излучателя 25.

От адсорбционной камеры 20 газопровод 28, который включает в себя второй клапан 29, ведет к газовому датчику 30. Газовый датчик 30 является масс-спектрометром 31 с соответствующим высоковакуумным насосом 32. Десорбция газа через линию 28 происходит непосредственно в масс-спектрометр 31.

Во время определения утечек сначала при закрытом втором клапане 29 и открытом первом клапане 21 отсасывается газ окружающей среды. Этот процесс выполняют в течение предварительно заданного времени, например 30 секунд. При этом происходит адсорбция газа в адсорбционной камере 20. Затем первый клапан 21 закрывают, а второй клапан 29 открывают. Третий клапан 33 во всасывающей линии 13 закрывают. В этом состоянии происходит десорбция путем активирования теплового излучателя 25. Газ высвобождается из адсорбера и под воздействием высоковакуумного насоса 32 попадает в масс-спектрометр 31. В газовом датчике 30 посредством масс-спектрометра 31 происходит определение количественной измеряемой величины. Для калибровки весь процесс осуществляют при тех же условиях, как и при последующем испытании, с известной утечкой. Из результирующего сигнала и известной интенсивности утечки путем образования соотношения вычисляют калибровочный коэффициент, который применяют при всех последующих измерениях.

После завершения процесса испытания происходит следующий процесс испытания, при котором окружающий предмет 10 газ 15 сначала отсасывают через адсорбционную камеру 20 при закрытом втором клапане 29.

Похожие патенты RU2565327C2

название год авторы номер документа
УСТАНОВКА ДЛЯ РАЗДЕЛЕНИЯ ГАЗОВ И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ 2019
  • Кисий Мицуру
  • Ямамото Томоки
RU2773664C1
УСОВЕРШЕНСТВОВАННОЕ УСТРОЙСТВО И СПОСОБЫ ТЕПЛОПЕРЕДАЧИ В СОРБЦИОННЫХ СИСТЕМАХ ТВЕРДОЕ ТЕЛО - ПАР 1994
  • Кирол Ланс
  • Рокенфеллер Юин
RU2142101C1
Способ разделения газового потока на отдельные компоненты или фракции 2016
  • Мнушкин Игорь Анатольевич
RU2626354C9
Способ регенерации адсорбентов при переработке природного газа 2022
  • Мнушкин Игорь Анатольевич
  • Ерохин Евгений Викторович
  • Мифтахов Динар Ильдусович
RU2786205C1
СПОСОБ ИЗВЛЕЧЕНИЯ АЛКЕНА 1994
  • Рамакришнан Рамачандран[Us]
  • Лок Х.Дао[Us]
RU2100336C1
Способ разделения газового потока на отдельные компоненты или фракции 2016
  • Мнушкин Игорь Анатольевич
RU2627849C1
СИСТЕМА КЛИМАТ-КОНТРОЛЯ АВТОМОБИЛЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2013
  • Чжун Юнфан
  • Левин Майкл
  • Шайх Фуркан Зафар
  • Демитрофф Данрич Хенри
  • Мэш Дон
RU2562003C2
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ТРАНСПОРТНОГО СРЕДСТВА, СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА И СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ТРАНСПОРТНОГО СРЕДСТВА 2015
  • Левин Майкл
  • Шаикх Фуркан Зафар
  • Демитрофф Дэнрик Генри
  • Маршалл Лоуренс
RU2674732C2
Способ и установка адсорбционной осушки и очистки природного газа 2019
  • Мнушкин Игорь Анатольевич
RU2717052C1
Стенд для измерения адсорбции газов и паров гравиметрическим методом и способ его эксплуатации 2019
  • Школин Андрей Вячеславович
  • Фомкин Анатолий Алексеевич
  • Меньщиков Илья Евгеньевич
  • Харитонов Виктор Михайлович
  • Пулин Александр Леонидович
RU2732199C1

Реферат патента 2015 года СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УТЕЧКИ КОНДЕНСИРУЕМОГО ГАЗА ИЗ СОДЕРЖАЩЕГО КОНДЕНСИРУЕМЫЙ ГАЗ ПРИБОРА

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки герметичности устройства, содержащего конденсируемый газ, прежде всего хладагент. Сущность: отсасывают газ (15) из окружающей устройство (10) среды. Направляют упомянутый газ (15) через адсорбер (22). Активируют адсорбер (22) для десорбции накопившегося на нем газа. Направляют десорбированный газ посредством высоковакуумного насоса (32) к газовому счетчику (30) для селективного распознавания. При этом десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом (32). Технический результат: повышение надежности контроля, обеспечение простоты конструкции. 2 н. и 8 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 565 327 C2

1. Способ определения утечки конденсируемого газа, прежде всего хладагента, из содержащего конденсируемый газ прибора, включающий:
- отсасывание газа окружающей среды из окружающей прибор среды,
- направление газа окружающей среды через адсорбер, который адсорбирует конденсируемый газ,
- активация адсорбера для десорбции адсорбированного газа и
- направление десорбированного газа посредством высоковакуумного насоса к газовому датчику для селективного распознавания газа, причем десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом.

2. Способ по п.1, в котором адсорбер активируют нагреванием.

3. Способ по п.2, в котором нагревание выполняют с помощью теплового излучателя.

4. Способ по п.1, в котором направление газа окружающей среды через адсорбер завершают до начала активации.

5. Способ по п.1, в котором в газовом датчике определяют количественную измеряемую величину, которая после калибровки испытательной утечкой указывает интенсивность утечки.

6. Способ по п.1, в котором адсорбер во время адсорбции охлаждают.

7. Способ по п.1, в котором газовый датчик имеет масс-спектрометр.

8. Способ по п.1, в котором прибор размещают в испытательной камере, которая содержит газ окружающей среды.

9. Устройство для определения утечки конденсируемого газа, прежде всего хладагента, из содержащего конденсируемый газ прибора, содержащее:
- подающий насос для отсасывания газа окружающей среды из окружающей прибор среды и для направления этого газа через адсорбционную камеру, содержащую адсорбер,
- подсоединенный к адсорбционной камере газовый датчик для селективного распознавания конденсируемого газа,
- управляемое активирующее устройство для активации адсорбера с целью десорбции адсорбированного газа и
- высоковакуумный насос для направления десорбированного газа к газовому датчику, причем десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом.

10. Устройство по п.9, дополнительно содержащее первый клапан, посредством которого адсорбционная камера соединена с подающим насосом, второй клапан, посредством которого адсорбционная камера соединена с газовым датчиком, и управляющее устройство, посредством которого второй клапан во время фазы адсорбции закрыт, а во время фазы десорбции - открыт.

Документы, цитированные в отчете о поиске Патент 2015 года RU2565327C2

DE 102007057944 A1, 04.06.2009
US 4785666 A, 22.11.1988

RU 2 565 327 C2

Авторы

Вернер Гроссе-Блей

Герхард Кюстер

Даты

2015-10-20Публикация

2010-10-22Подача